Câu hỏi:

54 lượt xem
Tự luận

Phân tích mỗi đa thức sau thành nhân tử:

a) a2+b2a2b2+abab{a^2} + {b^2} - {a^2}{b^2} + ab - a - b;

b) xy(x+y)yz(y+z)+xz(xz)xy\left( {x + y} \right) - yz\left( {y + z} \right) + xz\left( {x - z} \right).

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải:

a) \({a^2} + {b^2} - {a^2}{b^2} + ab - a - b\)

\( = \left( {{a^2} - {a^2}{b^2}} \right) - \left( {b - {b^2}} \right) - \left( {a - ab} \right)\)

\( = {a^2}\left( {1 - {b^2}} \right) - b\left( {1 - b} \right) - a\left( {1 - b} \right)\)

\( = {a^2}\left( {1 - b} \right)\left( {1 + b} \right) - b\left( {1 - b} \right) - a\left( {1 - b} \right)\)

\( = \left( {1 - b} \right)\left( {{a^2} + {a^2}b - b - a} \right)\)

\( = \left( {1 - b} \right)\left[ {\left( {{a^2} - a} \right) + \left( {{a^2}b - b} \right)} \right]\)

\( = \left( {1 - b} \right)\left[ {a\left( {a - 1} \right) + b\left( {a - 1} \right)\left( {a + 1} \right)} \right]\)

\( = \left( {1 - b} \right)\left( {a - 1} \right)\left( {a + ab + b} \right)\).

b) \(xy\left( {x + y} \right) - yz\left( {y + z} \right) + xz\left( {x - z} \right)\)

\( = {x^2}y + x{y^2} - {y^2}z - y{z^2} + xz\left( {x - z} \right)\)

\( = \left( {{x^2}y - y{z^2}} \right) + \left( {x{y^2} - {y^2}z} \right) + xz\left( {x - z} \right)\)

\( = y\left( {{x^2} - {z^2}} \right) + {y^2}\left( {x - z} \right) + xz\left( {x - z} \right)\)

\( = y\left( {x - z} \right)\left( {x + z} \right) + {y^2}\left( {x - z} \right) + xz\left( {x - z} \right)\)

\( = \left( {x - z} \right)\left( {xy + yz + {y^2} + xz} \right)\)

\( = \left( {x - z} \right)\left[ {\left( {xy + xz} \right) + \left( {yz + {y^2}} \right)} \right]\)

\( = \left( {x - z} \right)\left[ {x\left( {y + z} \right) + y\left( {y + z} \right)} \right]\)

\( = \left( {x - z} \right)\left( {y + z} \right)\left( {x + y} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ