Câu hỏi:
142 lượt xemXét một vật thật đặt trước thấu kính hội tụ có tiêu cự f > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0), d' là khoảng cách từ thấu kính đến ảnh (ảnh thật thì d' > 0, ảnh ảo thì d' < 0). Ta có công thức:
hay .
(Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 182, 187).
Xét trường hợp f = 3, đặt x = d, y = d'. Ta có hàm số và x ≠ 3.
a) Khảo sát và vẽ đồ thị của hàm số trên.
b) Dựa vào đồ thị hàm số trên, hãy cho biết vị trí của vật để ảnh của vật là: ảnh thật, ảnh ảo.
c) Khi vật tiến gần đến tiêu điểm thì ảnh thay đổi như thế nào?
Lời giải
Hướng dẫn giải:
a) Vì d > 0 nên với x = d thì x > 0.
Xét hàm số với x > 0 và x ≠ 3.
1. Tập xác định: D = (0; 3) ∪ (3; + ∞).
2. Sự biến thiên:
● Chiều biến thiên:
Đạo hàm y' = . Vì y' < 0 với mọi x > 0 và x ≠ 3 nên hàm số nghịch biến trên mỗi khoảng (0; 3) và (3; + ∞).
● Tiệm cận:
Ta có . Suy ra đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số.
Ta có . Suy ra đường thẳng x = 3 là tiệm cận đứng của đồ thị hàm số.
● Bảng biến thiên:
3. Đồ thị:
Đồ thị hàm số đi qua điểm (2; – 6) và điểm (6; 6).
Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.
b)
● Để vật là ảnh thật thì d' > 0, tức là y > 0.
Quan sát đồ thị hàm số , ta thấy trên khoảng (3; + ∞), đồ thị hàm số nằm phía trên trục Ox nên y > 0 trên khoảng này. Vậy với x > 3, tức d > 3 hay khoảng cách từ vật đến thấy kính lớn hơn 3 thì ảnh của vật là ảnh thật.
● Để vật là ảnh ảo thì d' < 0, tức là y < 0.
Quan sát đồ thị hàm số , ta thấy trên khoảng (0; 3), đồ thị hàm số nằm phía dưới trục Ox nên y < 0 trên khoảng này. Vậy với x ∈ (0; 3), tức d ∈ (0; 3) hay khoảng cách từ vật đến thấu kính lớn hơn 0 và nhỏ hơn 3 thì ảnh của vật là ảnh ảo.
c) Khi vật tiến gần đến tiêu điểm, tức vị trí A tiến gần đến vị trí F, thì khoảng cách AF dần tiến tới 0, hay d – f → 0, suy ra d → f, tức là x → 3.
Cho hàm số y = – x2 + 4x – 3.
a) Lập bảng biến thiên.
b) Vẽ đồ thị của hàm số.
Khảo sát và vẽ đồ thị của các hàm số sau:
a) y = – 2x3 – 3x2 + 1;
b) y = x3 + 3x2 + 3x + 2.
Khảo sát và vẽ đồ thị của các hàm số sau:
a) y = x3 + x – 2;
b) y = 2x3 + x2 – – 3.