Câu hỏi:
500 lượt xemVới x thuộc tập hợp nào dưới đây thì tam thức bậc hai f(x) = x2 – 6x + 8 không dương?
(–∞; 2] ∪ [4; +∞);
[2; 4];
(2; 4).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Để f(x) không dương thì x2 – 6x + 8 ≤ 0
Xét f(x) = x2 – 6x + 8 có ∆ = 4 > 0 nên f(x) có hai nghiệm phân biệt là x = 2; x = 4.
Hệ số a = 1 > 0.
Ta có bảng xét dấu sau:
x |
– ∞ 2 4 +∞ |
x2 – 6x + 8 |
+ 0 – 0 + |
Từ bảng xét dấu f(x) ta thấy để f(x) ≤ 0 thì x ∈ [2; 4].
Cho tam thức f(x) = ax2 + bx + c (a ≠ 0) và Δ = b2 – 4ac. Ta có f(x) ≤ 0 với mọi x ∈ ℝ khi và chỉ khi
Số giá trị nguyên của x để tam thức f(x) = 2x2 – 7x – 9 nhận giá trị âm là
4;