Câu hỏi:

50 lượt xem
Tự luận

Cho hàm số y=13x3x2+4.

a) Khảo sát và vẽ đồ thị của hàm số.

b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.

Xem đáp án

Lời giải

Hướng dẫn giải:

a) Xét hàm số y=13x3x2+4.

1. Tập xác định: ℝ.

2. Sự biến thiên:

● Chiều biến thiên:

Đạo hàm y' = x2 – 2x; y' = 0 ⇔ x = 0 hoặc x = 2.

Trên các khoảng (– ∞; 0) và (2; + ∞), y' > 0 nên hàm số đồng biến trên mỗi khoảng đó.

Trên khoảng (0; 2), y' < 0 nên hàm số nghịch biến trên khoảng đó.

● Cực trị:

Hàm số đạt cực đại tại x = 0 và y = 4.

Hàm số đạt cực tiểu tại x = 2 và yCT = 83.

● Các giới hạn tại vô cực:

limxy=limxx3131x+4x3=;  limx+y=limx+x3131x+4x3=+

Ÿ Bảng biến thiên:

Bài 11 trang 38 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

3. Đồ thị:

Khi x = 0 thì y = 4 nên (0; 4) là giao điểm của đồ thị với trục Oy.

Ta có y = 0 ⇔ 13x3x2+4 = 0, phương trình này có 1 nghiệm nên đồ thị của hàm số giao với trục Ox tại 1 điểm.

Điểm (0; 4) là cực đại và điểm 2;  83 là điểm cực tiểu của đồ thị hàm số.

Đồ thị hàm số đi qua điểm (3; 4).

Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.

Bài 11 trang 38 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Đồ thị của hàm số có tâm đối xứng là điểm I1;103.

b) Hai điểm cực trị của đồ thị hàm số là (0; 4) và 2;  83.

Khoảng cách giữa hai điểm cực trị của đồ thị hàm số là

d=202+8342=4103.

CÂU HỎI HOT CÙNG CHỦ ĐỀ