Câu hỏi:
66 lượt xemKhảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = 2x3 – 3x2 + 1;
b) y = – x3 + 3x2 – 1;
c) y = (x – 2)3 + 4;
d) y = – x3 + 3x2 – 3x + 2;
e)
g) y = – x3 – 3x.
Lời giải
Hướng dẫn giải:
a) y = 2x3 – 3x2 + 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = +, y = - .
● y' = 6x2 – 6x;
y' = 0 ⇔ 6x2 – 6x = 0 ⇔ x = 0 hoặc x = 1.
● Bảng biến thiên:
Hàm số đã cho đồng biến trên mỗi khoảng (– ∞; 0) và (1; + ∞); nghịch biến trên khoảng (0; 1).
Hàm số đạt cực đại tại x = 0, yCĐ = 1; đạt cực tiểu tại x = 1, yCT = 0.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; 1).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình 2x3 – 3x2 + 1 = 0 ta được x = hoặc x = 1.
Vậy đồ thị hàm số giao với trục hoành tại các điểm , (1; 0).
● Đồ thị hàm số đi qua các điểm (1; 0), (0; 1), , (– 1; – 4) và .
Vậy đồ thị hàm số y = 2x3 – 3x2 + 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I.
b) y = – x3 + 3x2 – 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = – ∞, y = + ∞.
● y' = – 3x2 + 6x;
y' = 0 ⇔ – 3x2 + 6x = 0 ⇔ x = 0 hoặc x = 2.
● Bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng (0; 2); nghịch biến trên mỗi khoảng (– ∞; 0) và (2; + ∞).
Hàm số đạt cực đại tại x = 2, yCĐ = 3; đạt cực tiểu tại x = 0, yCT = – 1.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; – 1).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình – x3 + 3x2 – 1 = 0, ta thấy phương trình có 3 nghiệm phân biệt nên đồ thị hàm số cắt trục hoành tại 3 điểm.
● Đồ thị hàm số đi qua các điểm (– 1; 3), (0; – 1), (1; 1), (2; 3) và (3; – 1).
Vậy đồ thị hàm số y = – x3 + 3x2 – 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(1; 1).
c) Ta có y = (x – 2)3 + 4 = x3 – 6x2 + 12x – 8 + 4 = x3 – 6x2 + 12x – 4.
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = +, y = - .
● y' = 3x2 – 12x + 12 = 3(x – 2)2;
y' ≥ 0 với mọi x ∈ ℝ.
y' = 0 khi x = 2.
● Bảng biến thiên:
Hàm số đồng biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; – 4).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình x3 – 6x2 + 12x – 4 = 0, ta thấy phương trình có 1 nghiệm nên đồ thị hàm số cắt trục hoành tại 1 điểm.
● Đồ thị hàm số đi qua các điểm (0; – 4), (1; 3), (2; 4) và (3; 5).
Vậy đồ thị hàm số y = (x – 2)3 + 4 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(2; 4).
d) y = – x3 + 3x2 – 3x + 2
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = – ∞, y = + ∞.
● y' = – 3x2 + 6x – 3 = – 3(x – 1)2 ≤ 0 với mọi x ∈ ℝ;
y' = 0 khi x = 1.
● Bảng biến thiên:
Hàm số đã cho nghịch biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; 2).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình – x3 + 3x2 – 3x + 2 = 0 ta được x = 2.
Vậy đồ thị hàm số cắt trục hoành tại điểm (2; 0).
● Đồ thị hàm số đi qua các điểm (0; 2), (2; 0) và (1; 1).
Vậy đồ thị hàm số y = – x3 + 3x2 – 3x + 2 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(1; 1).
e)
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = + ∞, y = - ∞.
● y' = x2 + 2x + 2 = (x + 1)2 + 1 > 0 với mọi x ∈ ℝ;
● Bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Giao điểm của đồ thị với trục tung: (0; 1).
● Giao điểm của đồ thị với trục hoành:
Giải phương trình = 0 ta thấy có 1 nghiệm nên đồ thị hàm số cắt trục hoành tại 1 điểm.
● Đồ thị hàm số đi qua các điểm (0; 1), .
Vậy đồ thị hàm số y = được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I.
g) y = – x3 – 3x
1) Tập xác định: ℝ.
2) Sự biến thiên:
● Giới hạn tại vô cực: y = - ∞, y = + ∞.
● y' = – 3x2 – 3 = – 3(x2 + 1) < 0 với mọi x ∈ ℝ;
● Bảng biến thiên:
Hàm số đã cho nghịch biến trên khoảng (– ∞; + ∞).
Hàm số không có cực trị.
3) Đồ thị
● Đồ thị hàm số đi qua gốc tọa độ O(0; 0).
● Đồ thị hàm số đi qua các điểm (0; 0), (– 1; 4) và (1; – 4).
Vậy đồ thị hàm số y = – x3 – 3x được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm O(0; 0).
Trong Ví dụ 9, góc dốc của con đường trên đoạn [– 1 000; 1 000] lớn nhất tại điểm nào?
Đồ thị hàm số y = x3 – 3x – 1 là đường cong nào trong các đường cong sau?
A.
B.
C.
D.