Câu hỏi:
60 lượt xemCho hai đa thức: ;
.
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Xác định bậc và hệ số cao nhất của đa thức .
c) So sánh và .
d) Tìm đa thức sao cho . Tìm nghiệm của đa thức .
Lời giải
Hướng dẫn giải:
a) \(A\left( x \right) = 2{x^4} + 3{x^2} - x + 3 - {x^2} - {x^4} - 6{x^3}\)
\( = \left( {2{x^4} - {x^4}} \right) - 6{x^3} + \left( {3{x^2} - {x^2}} \right) - x + 3\)
\( = {x^4} - 6{x^3} + 2{x^2} - x + 3\).
\(B\left( x \right) = 10{x^3} + 3 - {x^4} - 4{x^3} + 4x - 2{x^2}\)
\( = - {x^4} + \left( {10{x^3} - 4{x^3}} \right) - 2{x^2} + 4x + 3\)
\( = - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\).
b) Đa thức \(A\left( x \right)\) có bậc là 4, hệ số cao nhất là \(1\).
c) Ta có \(A\left( { - 1} \right) = {\left( { - 1} \right)^4} - 6.{\left( { - 1} \right)^3} + 2.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 3\)
\( = 1 + 6 + 2 + 1 + 3 = 13\)
\(B\left( 1 \right) = - {1^4} + {6.1^3} - {2.1^2} + 4.1 + 3\)
\( = - 1 + 6 - 2 + 4 + 3 = 10\)
Do \(13 > 10\) nên \(A\left( { - 1} \right) > B\left( 1 \right)\).
d) Ta có \(A\left( x \right) = M\left( x \right) - B\left( x \right)\)
Suy ra \(M\left( x \right) = A\left( x \right) + B\left( x \right)\)
\(M\left( x \right) = \left( {{x^4} - 6{x^3} + 2{x^2} - x + 3} \right) + \left( { - {x^4} + 6{x^3} - 2{x^2} + 4x + 3} \right)\)
\[ = {x^4} - 6{x^3} + 2{x^2} - x + 3 - {x^4} + 6{x^3} - 2{x^2} + 4x + 3\]
\[ = \left( {{x^4} - {x^4}} \right) + \left( { - 6{x^3} + 6{x^3}} \right) + \left( {2{x^2} - 2{x^2}} \right) + \left( { - x + 4x} \right) + \left( {3 + 3} \right)\]
\[ = 3x + 6.\]
Để tìm nghiệm của đa thức \(M\left( x \right)\), ta cho \(M\left( x \right) = 0\)
Do đó \(3x + 6 = 0\), suy ra \(x = - 2\).
Vậy \(x = - 2\) là nghiệm của đa thức \(M\left( x \right)\).