Câu hỏi:

187 lượt xem
Tự luận

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a; AD = a2, góc giữa đường thẳng A'C và mặt phẳng (ABCD) bằng 30°.

a) Tính theo a thể tích khối hộp chữ nhật.

b) Tính theo a khoảng cách giữa hai đường thẳng BD và CD'.

Xem đáp án

Lời giải

Hướng dẫn giải:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a; AD = acăn2

a) Vì AA'  (ABCD) nên AC là hình chiếu của A'C trên mặt phẳng (ABCD).

Do đó góc giữa đường thẳng A'C và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng A'C và AC, mà (A'C, AC) = A'CA^=30°.

Vì ABCD là hình chữ nhật nên AB = CD = a; AD = BC = a2.

Xét tam giác ABC vuông tại B, có AC = AB2+BC2=a2+2a2=a3.

Xét tam giác A'AC vuông tại A, có AA' = AC.tan30° = a333=a.

Khi đó VABCD.A'B'C'D' = AA' . AB . AD = a.a.a2 = a32.

b) Có A'D' // BC và A'D' = BC (do cùng song song và bằng AD).

Do đó A'D'CB là hình bình hành, suy ra CD' // BA'. Do đó CD' // (A'DB).

Khi đó d(BD, CD') = d(CD', (A'DB)) = d(D', (A'DB)).

Vì AD' cắt mặt phẳng (A'BD) tại trung điểm của đoạn AD' nên

d(D', (A'DB)) = d(A, (A'DB)) = h.

Áp dụng kết quả bài 7.7 trang 28 SBT Toán tập 2, ta có:

1h2=1A'A2+1AD2+1AB2=1a2+12a2+1a2=52a2h=a105.

Vậy d(BD, CD') =a105 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ