Câu hỏi:
47 lượt xemLời giải
Hướng dẫn giải:
+) Với x > −1 thì f(x) = liên tục.
+) Với x < −1 thì f(x) = m.4−x + 1 liên tục.
Để hàm số liên tục trên toàn bộ tập số thực ℝ khi và chỉ khi hàm số liên tục tại x = −1.
Ta xét tính liên tục của hàm số tại x = −1. Ta có:
f(– 1) = 4m + 1;
;
.
Suy ra hàm số liên tục trên ℝ khi và chỉ khi 4m+1 = m = -.
Vậy m = - là giá trị cần tìm.
Hàm số y = cos là hàm số tuần hoàn với chu kì
A. 2π.
B. π.
C. .
D. 3π.
Nghiệm lớn nhất của phương trình lượng giác cos = sinx trong đoạn là
A. .
B. .
C. .
D. .
Giá trị của m để hàm số liên tục trên ℝ là
A. 3.
B. 1.
C. −3.
D. −1.
Hàm số đồng biến trên toàn bộ tập số thực ℝ là
A. y = 2−x.
B. .
C. y = lnx.
D. y = logx.
Cho mẫu số liệu ghép nhóm sau về thời gian sử dụng mạng xã hội của một nhóm học sinh trong ngày.
Thời gian (giờ) |
[0; 0,5) |
[0,5; 1) |
[1; 1,5) |
[1,5; 2) |
[2; 2,5) |
Số học sinh |
2 |
5 |
8 |
6 |
4 |
Thời gian (giờ) sử dụng mạng xã hội trung bình trong ngày của nhóm học sinh là
A. 1,0.
B. 1,25.
C. 1,35.
D. 1,5.
Cho mẫu số liệu ghép nhóm sau về thời gian sử dụng mạng xã hội của một nhóm học sinh trong ngày.
Thời gian (giờ) |
[0; 0,5) |
[0,5; 1) |
[1; 1,5) |
[1,5; 2) |
[2; 2,5) |
Số học sinh |
2 |
5 |
8 |
6 |
4 |
Nhóm chứa tứ phân vị thứ ba là nhóm
A. [0,5; 1).
B. [1; 1,5).
C. [1,5; 2).
D. [2; 2,5).
Giải các phương trình sau:
a) ;
b) log3(x2 – x – 3) = log3(2x – 1) + 1.
Cho các hàm số f(x) = 32x −1 và g(x) = xln9. Giải bất phương trình f'(x) < g'(x).
Một công ty bất động sản đã thống kê số lượng khách hàng theo giá đất họ đầu tư và thu được kết quả như sau:
Mức giá (triệu đồng/m2) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
Số khách hàng |
15 |
25 |
38 |
29 |
13 |
a) Ước lượng mức giá có nhiều khách hàng lựa chọn nhất.
b) Công ty muốn hướng đến 25% khách hàng cao cấp nhất thì nên kinh doanh bất động sản với mức giá ít nhất là bao nhiêu?