Câu hỏi:

194 lượt xem

Độ dài cạnh BCBC trong ΔABC\Delta ABC cân tại AA ở hình vẽ bên là

4    cm4\;\;{\rm{cm}};
5    cm5\;\;{\rm{cm}};
6    cm6\;\;{\rm{cm}};
7    cm7\;\;{\rm{cm}}.

Xem đáp án

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Tam giác \(ABC\) cân tại \(A\) nên \(AB = AC = AH + HC = 7 + 2 = 9\;\;{\rm{cm}}\)

Xét \(\Delta ABH\) vuông tại \(H\) có: \(B{H^2} = A{B^2} - A{H^2} = {9^2} - {7^2} = 32\) (định lí Pythagore)

Xét \(\Delta BCH\) vuông tại \(H\) có: \(B{C^2} = B{H^2} + C{H^2} = 32 + {2^2} = 36\) (định lí Pythagore)

Suy ra \(BC = \sqrt {36}  = 6\;\;{\rm{cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 13:
Tự luận

Thu gọn biểu thức:

     a) (12x13y15+6x10y14):(3x10y14);\left( { - 12{x^{13}}{y^{15}} + 6{x^{10}}{y^{14}}} \right):\left( { - 3{x^{10}}{y^{14}}} \right);                              b) (xy)(x22x+y)x3+x2y.\left( {x - y} \right)\left( {{x^2} - 2x + y} \right) - {x^3} + {x^2}y.


1 năm trước 516 lượt xem