Câu hỏi:
52 lượt xemLời giải
Hướng dẫn giải:
GT |
a là đường trung trực của đoạn thẳng AB và CD, M là trung điểm của AB, N là trung điểm của CD |
KL |
a) AB // CD; b) MNC = MND; c) ; d) AD = BC, ; e) . |
Chứng minh (Hình 95):
a) Vì a là đường trung trực của cả hai đoạn thẳng AB và CD (giả thiết)
Nên a AB và a CD.
Do đó AB // CD (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba)
Vậy AB // CD.
b) Ta có: a CD tại N nên MNC vuông tại N và MND vuông tại N.
Xét MNC (vuông tại N) và MND (vuông tại N) có:
MN là cạnh chung
NC = ND (N là trung điểm của CD).
Do đó MNC = MND (hai cạnh góc vuông).
c) Vì MNC = MND (chứng minh câu b)
Nên (hai góc tương ứng). (1)
Do AM // DN nên (hai góc so le trong). (2)
Do BM // CN nên (hai góc so le trong). (3)
Từ (1), (2) và (3) suy ra .
Vậy
d)Vì MNC = MND (chứng minh câu b)
Nên MC = MD (hai cạnh tương ứng).
Xét AMD và BMC có:
AM = BM (M là trung điểm của AB),
(chứng minh trên),
MD = MC (chứng minh trên)
Do đó AMD = BMC (c.g.c)
Suy ra AD = BC (hai cạnh tương ứng) và (hai góc tương ứng).
Vậy AD = BC và .
e) Vì AMD = BMC (chứng minh câu d)
Nên (hai góc tương ứng).
Mà (chứng minh câu c)
Do đó
Hay .
Vậy
Cho đoạn thẳng AB có trung điểm O. Giả sử M là một điểm khác O sao cho MA = MB