Câu hỏi:
16 lượt xemLời giải
Hướng dẫn giải:
GT |
a là đường trung trực của đoạn thẳng AB và CD, M là trung điểm của AB, N là trung điểm của CD |
KL |
a) AB // CD; b) MNC = MND; c) ; d) AD = BC, ; e) . |
Chứng minh (Hình 95):
a) Vì a là đường trung trực của cả hai đoạn thẳng AB và CD (giả thiết)
Nên a AB và a CD.
Do đó AB // CD (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba)
Vậy AB // CD.
b) Ta có: a CD tại N nên MNC vuông tại N và MND vuông tại N.
Xét MNC (vuông tại N) và MND (vuông tại N) có:
MN là cạnh chung
NC = ND (N là trung điểm của CD).
Do đó MNC = MND (hai cạnh góc vuông).
c) Vì MNC = MND (chứng minh câu b)
Nên (hai góc tương ứng). (1)
Do AM // DN nên (hai góc so le trong). (2)
Do BM // CN nên (hai góc so le trong). (3)
Từ (1), (2) và (3) suy ra .
Vậy
d)Vì MNC = MND (chứng minh câu b)
Nên MC = MD (hai cạnh tương ứng).
Xét AMD và BMC có:
AM = BM (M là trung điểm của AB),
(chứng minh trên),
MD = MC (chứng minh trên)
Do đó AMD = BMC (c.g.c)
Suy ra AD = BC (hai cạnh tương ứng) và (hai góc tương ứng).
Vậy AD = BC và .
e) Vì AMD = BMC (chứng minh câu d)
Nên (hai góc tương ứng).
Mà (chứng minh câu c)
Do đó
Hay .
Vậy
Hình 86 minh họa chiếc cân thăng bằng và gợi nên hình ảnh đoạn thẳng AB, đường thẳng d
Quan sát Hình 87.
a) So sánh hai đoạn thẳng IA và IB.
b) Tìm số đo của các góc I1, I2
Cho đoạn thẳng AB có trung điểm O. Giả sử M là một điểm khác O sao cho MA = MB
Trong Hình 94, đường thẳng CD là đường trung trực của đoạn thẳng AB. Chứng minh =