Câu hỏi:

97 lượt xem
Tự luận

Cho bzcya=cxazb=aybxc\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}. Chứng minh rằng xa=yb=zc\frac{x}{a} = \frac{y}{b} = \frac{z}{c}.

Xem đáp án

Lời giải

Hướng dẫn giải:

Ta có: bzcya=abzacya2\frac{{bz - cy}}{a} = \frac{{abz - acy}}{{{a^2}}};

cxazb=bcxbazb2\frac{{cx - az}}{b} = \frac{{bcx - baz}}{{{b^2}}}; aybxc=caycbxc2\frac{{ay - bx}}{c} = \frac{{cay - cbx}}{{{c^2}}}.

bzcya=cxazb=aybxc\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}

Nên bzcya=aybxc=abzacya2=bcxbazb2=caycbxc2\frac{{bz - cy}}{a} = \frac{{ay - bx}}{c} = \frac{{abz - acy}}{{{a^2}}} = \frac{{bcx - baz}}{{{b^2}}} = \frac{{cay - cbx}}{{{c^2}}}

=abzacy+bcxbaz+caycbxa2+b2+c2=0 = \frac{{abz - acy + bcx - baz + cay - cbx}}{{{a^2} + {b^2} + {c^2}}} = 0.

Do đó bzcy=0;  aybx=0bz - cy = 0;\,\,ay - bx = 0.

Khi đó, bz=cybz = cy nên by=cz\frac{b}{y} = \frac{c}{z}ay=bxay = bx nên by=ax\frac{b}{y} = \frac{a}{x}.

Do đó ax=by=cz\frac{a}{x} = \frac{b}{y} = \frac{c}{z} (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ