Câu hỏi:

156 lượt xem
Tự luận

Cho các số x,yx,y thỏa mãn đẳng thức: 5x2+5y2+8xy2x+2y+2=0.5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0. Tính giá trị của biểu thức M=(x+y)2023+(x2)2024+(y+1)2025M = {\left( {x + y} \right)^{2023}} + {\left( {x - 2} \right)^{2024}} + {\left( {y + 1} \right)^{2025}}.

Xem đáp án

Lời giải

Hướng dẫn giải:

Ta có: \(5{x^2} + 5{y^2} + 8xy - 2x + 2y + 2 = 0\)

\(\left( {4{x^2} + 8xy + 4{y^2}} \right) + \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} + 2y + 1} \right) = 0\)

\({\left( {2x + 2y} \right)^2} + {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 0\) \(\left( * \right)\)

Với mọi \(x,y\) ta có: \({\left( {2x + 2y} \right)^2} \ge 0;\,\,{\left( {x - 1} \right)^2} \ge 0;\,\,{\left( {y + 1} \right)^2} \ge 0\)

Do đó \(\left( * \right)\) xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {2x + 2y} \right)^2} = 0\\{\left( {x - 1} \right)^2} = 0\\\,{\left( {y + 1} \right)^2} = 0\end{array} \right.\)

Hay \(\left\{ \begin{array}{l}2x + 2y = 0\\x - 1 = 0\\\,y + 1 = 0\end{array} \right.\), tức \(\left\{ \begin{array}{l}x + y = 0\\x = 1\\\,y =  - 1\end{array} \right.\)

Khi đó \(M = {\left( {x + y} \right)^{2023}} + {\left( {x - 2} \right)^{2024}} + {\left( {y + 1} \right)^{2025}} = {0^{2023}} + {\left( {1 - 2} \right)^{2024}} + {\left( { - 1 + 1} \right)^{2025}} = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 13:
Tự luận

Thu gọn biểu thức:

a) (4x48x2y2+12x5y):(4x2);\left( {4{x^4} - 8{x^2}{y^2} + 12{x^5}y} \right):\left( { - 4{x^2}} \right);                                                                               

b) x2(xy2)xy(1xy)x3.{x^2}\left( {x - {y^2}} \right) - xy\left( {1 - xy} \right) - {x^3}.


12 tháng trước 105 lượt xem