Câu hỏi:

65 lượt xem
Tự luận

Cho đa thức P(x)=ax2+bx+cP\left( x \right) = a{x^2} + bx + cx= 2x =  - 2 là một nghiệm.

Xác định aa, bb, cc biết số aa lớn hơn số cc năm đơn vị và đa thức P(x)P\left( x \right) chia hết cho x2x - 2.

Xem đáp án

Lời giải

Hướng dẫn giải:

• Do số \(a\) lớn hơn số \(c\) năm đơn vị nên ta có \(a = c + 5\).

• Theo đề, ta có \(x =  - 2\) là một nghiệm của đa thức \(P\left( x \right)\).

Suy ra \(P\left( { - 2} \right) = 0\).

Do đó \(4a - 2b + c = 0\).

Suy ra \(4a + c = 2b\,\,\,\,\left( 1 \right)\)

• Ta có đa thức \(P\left( x \right)\) chia hết cho \(x - 2\) \(\left( * \right)\)

Nên \(P\left( x \right) = \left( {x - 2} \right).Q\left( x \right)\) với \(Q\left( x \right)\) là thương của phép chia đa thức \(P\left( x \right)\) cho đa thức \(x - 2\).    

Khi đó \(P\left( 2 \right) = \left( {2 - 2} \right).Q\left( 2 \right) = 0\)

Do đó \(4a + 2b + c = 0\).

Suy ra \(4a + c =  - 2b\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right),\left( 2 \right)\) suy ra \(2b =  - 2b\).

Do đó \(4b = 0\), nên \(b = 0\).

Thế \(b = 0\)\(a = c + 5\) vào \(\left( 1 \right)\), ta được \(4\left( {c + 5} \right) + c = 0\).

Hay \(4c + 20 + c = 0\).

Suy ra \(5c =  - 20\), nên \(c =  - 4\).

Với \(a = c + 5\), ta có \(a =  - 4 + 5 = 1\).

Vậy \(a = 1\), \(b = 0\), \(c =  - 4\) thỏa mãn yêu cầu bài toán.

\(\left( * \right)\) Lưu ý: Với dữ kiện đa thức \(P\left( x \right)\) chia hết cho \(x - 2\), ta có thể thực hiện đặt tính chia đa thức và vẫn suy ra được điều kiện \(\left( 2 \right)\) như sau:

 

 

 

Khi đó, để \(P\left( x \right)\) chia hết cho \(x - 2\) thì \(c + 2b + 4a = 0\).

Suy ra \(4a + c =  - 2b\,\,\,\,\left( 2 \right)\).

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 9:
Tự luận

Tìm xx, biết:

a) x37=310\frac{{x - 3}}{7} = \frac{3}{{10}};      b) (42x312x):(6x)+7x(x+2)=8\left( {42{x^3} - 12x} \right):\left( { - 6x} \right) + 7x\left( {x + 2} \right) = 8.


1 năm trước 62 lượt xem