Câu hỏi:
89 lượt xemCho tam giác cân tại . Lấy điểm trên cạnh , điểm trên cạnh sao cho .
a) Chứng minh và .
b) Chứng minh , từ đó suy ra là đường phân giác của góc .
c) Tìm vị trí của hai điểm và sao cho . Khi đó tìm vị trí của điểm .
Lời giải
Hướng dẫn giải:
a) Ta có \[AB = AC\] (do \(\Delta ABC\) cân tại \(A\)) và \[BD = CE\] (giả thiết)
Suy ra \(AB - BD = AC - CE\) hay \(AD = AE\).
Xét \(\Delta ABE\) và \(\Delta ACD\) có:
\[AB = AC\] (chứng minh trên);
\(\widehat {BAC}\) là góc chung;
\[AD = AE\] (chứng minh trên).
Do đó \[\Delta ABE = \Delta ACD\,\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right)\].
b) Từ \[\Delta ABE = \Delta ACD\] suy ra \(\widehat {ABE} = \widehat {ACD}\) (hai góc tương ứng)
Mà \(\widehat {ABC} = \widehat {ACB}\) (do \(\Delta ABC\) cân tại \(A\))
Suy ra \(\widehat {IBC} = \widehat {ICB}\)
Tam giác \[IBC\] có \(\widehat {IBC} = \widehat {ICB}\) nên là tam giác cân tại \(I\).
Do đó \[IB = IC\].
Xét \(\Delta ABI\) và \(\Delta ACI\) có:
\[AB = AC\] (chứng minh trên);
\[AI\] là cạnh chung;
\[IB = IC\] (chứng minh trên).
Do đó \[\Delta ABI = \Delta ACI\,\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\]
Suy ra \(\widehat {BAI} = \widehat {CAI}\) (hai góc tương ứng).
Nên \[AI\] là tia phân giác của \(\widehat {BAC}\).
c) Xét \(\Delta ADE\) có \[AD = AE\] nên \(\Delta ADE\) cân tại \(A\), do đó \(\widehat {ADE} = \widehat {AED}\).
Mà \(\widehat {DAE} + \widehat {ADE} + \widehat {AED} = 180^\circ \) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {ADE} = \widehat {AED} = \frac{{180^\circ - \widehat {DAE}}}{2}\,\,\,\,\,\left( 1 \right)\).
Tương tự với \(\Delta ABC\) cân tại \(A\) ta có \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2}\,\,\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\widehat {ADE} = \widehat {ABC}\)
Mà hai góc này ở vị trí đồng vị nên \(DE\,{\rm{//}}\,BC\).
Suy ra \(\widehat {DEB} = \widehat {EBC}\) (hai góc so le trong) \(\left( 3 \right)\)
\(\Delta BDE\) có \[BD = DE\] nên là tam giác cân tại \(D\), suy ra \(\widehat {DBE} = \widehat {DEB}\,\,\,\,\,\left( 4 \right)\)
Từ \(\left( 3 \right)\) và \(\left( 4 \right)\) suy ra \(\widehat {DBE} = \widehat {EBC}\)
Khi đó \[BE\] là đường phân giác của \(\widehat {ABC}\).
Tương tự, với \[DE = EC\] ta cũng chứng minh được \[CD\] là đường phân giác của \(\widehat {ACB}\)
Xét \(\Delta ABC\) có \[BE,CD\] là hai đường phân giác của tam giác cắt nhau tại \(I\).
Suy ra \(I\) cách đều ba cạnh của \(\Delta ABC\).
Vậy để \[BD = DE = EC\] thì \[BE\] và \[CD\] là hai đường phân giác của \(\Delta ABC\), khi đó \(I\) cách đều ba cạnh của \(\Delta ABC\).