Câu hỏi:
143 lượt xemCho hình vẽ bên, biết , và tia là tia phân giác của góc .
a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.
b) Giải thích tại sao .
c) Tính số đo góc .
Lời giải
Hướng dẫn giải:
a) Học sinh vẽ lại hình theo đúng số đo các góc.
GT |
\(a,\,\,xx',\,\,yy'\) là các đường thẳng; \(a\) cắt \(xx'\) tại \(A\), \[\widehat {aAx'} = 60^\circ \]; \(a\) cắt \(yy'\) tại \(B\), \[\widehat {ABC} = 60^\circ \]; tia \(AC\) là tia phân giác của \(\widehat {BAx'}\). |
KL |
b) Giải thích \(xx'\,{\rm{//}}\,yy'\). c) Tính \(\widehat {ACB}\). |
b) Ta có \[\widehat {aAx'} = \widehat {ABC}\] (cùng bằng \[60^\circ \])
Mà hai góc này ở vị trí đồng vị nên \(xx'\,{\rm{//}}\,yy'\).
c) Ta có \[\widehat {aAx'} + \widehat {BAx'} = 180^\circ \] (hai góc kề bù)
\[\widehat {BAx'} = 180^\circ - \widehat {aAx'} = 180^\circ - 60^\circ = 120^\circ \]
Tia \(AC\) là tia phân giác của \(\widehat {BAx'}\) nên \(\widehat {BAC} = \widehat {CAx'} = \frac{1}{2}\widehat {BAx'} = 60^\circ \).
Do \(xx'\,{\rm{//}}\,yy'\) (chứng minh câu b) nên \(\widehat {ACB} = \widehat {CAx'} = 60^\circ \) (hai góc so le trong).
Tính giá trị của các biểu thức sau (tính hợp lí nếu có thể):
a) ; b) ; c) .