Câu hỏi:

115 lượt xem
Tự luận

Tính: I=1222+3242+.....+92102I = {1^2} - {2^2} + {3^2} - {4^2} + ..... + {9^2} - {10^2}.

Xem đáp án

Lời giải

Hướng dẫn giải:

Ta có: A=12+22+32+...+92+102A = {1^2} + {2^2} + {3^2} + ... + {9^2} + {10^2}

=1.(21)+2.(31)+3.(41)+...+9.(101)+10.(111) = 1\,.\,\left( {2 - 1} \right) + 2\,.\,\left( {3 - 1} \right) + 3\,.\,\left( {4 - 1} \right) + ... + 9\,.\,\left( {10 - 1} \right) + 10\,.\,\left( {11 - 1} \right)

=(1.2+2.3+3.4+...+9.10+10.11)(1+2+3+...+9+10) = \left( {1\,.\,2 + 2\,.\,3 + 3\,.\,4 + ... + 9\,.\,10 + 10\,.\,11} \right) - \left( {1 + 2 + 3 + ... + 9 + 10} \right)

Đặt M=1.2+2.3+3.4+...+9.10+10.11M = 1\,.\,2 + 2\,.\,3 + 3\,.\,4 + ... + 9\,.\,10 + 10\,.\,11

Suy ra 3M=1.2.3+2.3.3+3.4.3+...+9.10.3+10.11.33M = 1\,.\,2\,.\,3 + 2\,.\,3\,.\,3 + 3\,.\,4\,.\,3 + ... + 9\,.\,10\,.\,3 + 10\,.\,11\,.\,3

=1.2.3+2.3.(41)+3.4.(51)+...+9.10.(118)+10.11.(129) = 1\,.\,2\,.\,3 + 2\,.\,3\,.\,\left( {4 - 1} \right) + 3\,.\,4\,.\,\left( {5 - 1} \right) + ... + 9\,.\,10\,.\,\left( {11 - 8} \right) + 10\,.\,11\,.\,\left( {12 - 9} \right)

=1.2.3+2.3.41.2.3+3.4.52.3.4+...+9.10.118.9.10+10.11.129.10.11 = 1\,.\,2\,.\,3 + 2\,.\,3\,.\,4 - 1\,.\,2\,.\,3 + 3\,.\,4\,.\,5 - 2\,.\,3\,.\,4 + ... + 9\,.\,10\,.\,11 - 8\,.\,9\,.\,10 + 10\,.\,11\,.\,12 - 9\,.\,10\,.\,11

=10.11.  12 = 10\,.\,11\,.\;12=1320 = 1320.

Suy ra M=440M = 440

N=1+2+3+...+9+10N = 1 + 2 + 3 + ... + 9 + 10=(10+1).(1011+1)2 = \frac{{\left( {10 + 1} \right)\,.\,\left( {\frac{{10 - 1}}{1} + 1} \right)}}{2}=55 = 55.

Do đó A=MN=44055=385A = M - N = 440 - 55 = 385

Tương tự B=12+22+...+52B = {1^2} + {2^2} + ... + {5^2}

=1.(21)+2.(31)+...+ +5.(61) = 1\,.\,\left( {2 - 1} \right) + 2\,.\,\left( {3 - 1} \right) + ... +  + 5\,.\,\left( {6 - 1} \right)

=(1.2+2.3+...+5.6)(1+2+...+5) = \left( {1\,.\,2 + 2\,.\,3 + ... + 5\,.\,6} \right) - \left( {1 + 2 + ... + 5} \right)

Đặt P=1.2+2.3+...+5.6P = 1\,.\,2 + 2\,.\,3 + ... + 5\,.\,6

3P=1.2.3+2.3.3+...+5.6.33P = 1\,.\,2\,.\,3 + 2\,.\,3\,.\,3 + ... + 5\,.\,6\,.\,3

=1.2.3+2.3.(41)+...+5.6.(74) = 1\,.\,2\,.\,3 + 2\,.\,3\,.\,\left( {4 - 1} \right) + ... + 5\,.\,6\,.\,\left( {7 - 4} \right)

=1.2.3+2.3.41.2.3+...+5.6.74.5.6 = 1\,.\,2\,.\,3 + 2\,.\,3\,.\,4 - 1\,.\,2\,.\,3 + ... + 5\,.\,6\,.\,7 - 4\,.\,5\,.\,6

=5.6.  7 = 5\,.\,6\,.\;7=210 = 210.

Do đó P=70P = 70

Q=1+2+...+4+5Q = 1 + 2 + ... + 4 + 5=(5+1).(511+1)2 = \frac{{\left( {5 + 1} \right)\,.\,\left( {\frac{{5 - 1}}{1} + 1} \right)}}{2}=15 = 15

Vậy B=PQ=7015=55B = P - Q = 70 - 15 = 55

+) C=22+42+...+102C = {2^2} + {4^2} + ... + {10^2}

=22.(12+22+...+52) = {2^2}\,.\,\left( {{1^2} + {2^2} + ... + {5^2}} \right)

=4.B=4.15=60 = 4\,.\,B = 4\,.\,15 = 60.

Ta tính được: I=1222+3242+.....+92102I = {1^2} - {2^2} + {3^2} - {4^2} + ..... + {9^2} - {10^2}

=(12+22+32+42+.....+92+102)2.(22+42+.....+102) = \left( {{1^2} + {2^2} + {3^2} + {4^2} + ..... + {9^2} + {{10}^2}} \right) - 2\,.\,\left( {{2^2} + {4^2} + ..... + {{10}^2}} \right)

=A2.C = A - 2\,.\,C=3852.60 = 385 - 2\,.\,60=265 = 265.

CÂU HỎI HOT CÙNG CHỦ ĐỀ