Câu hỏi:
78 lượt xemTrong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
(C): x2 + y2 + 4x – 2y – 4 = 0.
Viết phương trình ảnh của (C)
a) qua phép vị tự tâm O, tỉ số k = 2;
b) qua phép vị tự tâm I(1; 1), tỉ số k = –2.
Lời giải
Hướng dẫn giải:
Đường tròn (C): x2 + y2 + 4x – 2y – 4 = 0 có tâm A(–2; 1) và bán kính .
a) Gọi đường tròn (C’) là ảnh của đường tròn (C) qua V(O, 2)
Khi đó (C’) có tâm ảnh của A qua V(O, 2) và bán kính R’ = |2|.R = 2.3 = 6.
Gọi A’(x’; y’) là ảnh của A qua V(O, 2).
Suy ra với và
Do đó
Vì vậy A’(–4; 2).
Vậy phương trình đường tròn (C’) là: (x + 4)2 + (y – 2)2 = 36.
b) Gọi đường tròn (C’’) là ảnh của đường tròn (C) qua V(I, –2).
Khi đó (C’’') có tâm ảnh của A qua V(I, –2) và bán kính R’’ = |–2|.R = 2.3 = 6.
Gọi A”(x”; y”) là ảnh của A qua V(I, –2).
Suy ra với và
Do đó
Vì vậy
Suy ra tọa độ A”(7; 1).
Vậy phương trình đường tròn (C”) là: (x – 7)2 + (y – 1)2 = 36.
Vẽ Hình 11 ra giấy kẻ ô li và tìm ảnh của tứ giác ABCD qua phép vị tự .
Tìm các tỉ số vị tự của phép biến hình được thực hiện trên cây thước vẽ truyền trong Hình 13.
Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn.