Câu hỏi:
93 lượt xemCho tam giác , đường trung tuyến và cắt nhau tại , biết .
a) Chứng minh: ;
b) Cho là một điểm nằm trong tam giác.
Hướng dẫn giải:
a) Ta có: là trọng tâm của tam giác (do là đường trung tuyến).
Suy ra mà nên .
Lại có: ; nên .
Xét tam giác và tam giác có:
(chứng minh trên)
(hai góc đối đỉnh)
(chứng minh trên)
Do đó, (c.g.c)
Suy ra, (hai cạnh tương ứng)
Mà là trung điểm của ; là trung điểm của .
Do đó, .
Kéo dài cắt tại .
Vì là trọng tâm của tam giác nên là đường trung tuyến của tam giác (ba đường trung tuyến trong tam giác đồng quy).
Do đó, là trung điểm của nên .
Xét và có:
(chứng minh trên)
(chứng minh trên)
Cạnh chung
Do đó, (c.c.c)
Suy ra, (hai góc tương ứng)
Mà , do đó .
Suy ra hay (đpcm)
b) Xét tam giác có: (bất đẳng thức tam giác) (1)
Xét tam giác có: (bất đẳng thức tam giác) (2)
Xét tam giác có: (bất đẳng thức tam giác) (3)
Cộng vế theo vế (1); (2); (3) ta được:
Suy ra,
Hay .
Do đó (đpcm)
Lời giải
Hướng dẫn giải:
a) Ta có: là trọng tâm của tam giác (do là đường trung tuyến).
Suy ra mà nên .
Lại có: ; nên .
Xét tam giác và tam giác có:
(chứng minh trên)
(hai góc đối đỉnh)
(chứng minh trên)
Do đó, (c.g.c)
Suy ra, (hai cạnh tương ứng)
Mà là trung điểm của ; là trung điểm của .
Do đó, .
Kéo dài cắt tại .
Vì là trọng tâm của tam giác nên là đường trung tuyến của tam giác (ba đường trung tuyến trong tam giác đồng quy).
Do đó, là trung điểm của nên .
Xét và có:
(chứng minh trên)
(chứng minh trên)
Cạnh chung
Do đó, (c.c.c)
Suy ra, (hai góc tương ứng)
Mà , do đó .
Suy ra hay (đpcm)
b) Xét tam giác có: (bất đẳng thức tam giác) (1)
Xét tam giác có: (bất đẳng thức tam giác) (2)
Xét tam giác có: (bất đẳng thức tam giác) (3)
Cộng vế theo vế (1); (2); (3) ta được:
Suy ra,
Hay .
Do đó (đpcm)
Cho biết đại lượng tỉ lệ thuận với đại lượng theo công thức . Hệ số tỉ lệ là