Câu hỏi:
295 lượt xemCho tam giác vuông cân tại . Gọi là trung điểm của cạnh . Lấy một điểm bất kì thuộc cạnh . Qua và , kẻ hai đường vuông góc với cạnh , lần lượt cắt tại và . Gọi là giao điểm của và
a) Chứng minh ;
b) Chứng minh ;
c) Chứng minh là đường phân giác của .
Lời giải
Hướng dẫn giải:
a) Tam giác \(\Delta ABC\) vuông cân tại \(A\) nên ta có: \(BA = AC\).
Và: \(\widehat {BAH} + \widehat {KAC} = \widehat {BAC} = 90^\circ \).
Tam giác \(\Delta KAC\) vuông tại \(K\) nên ta có:
\(\widehat {KAC} + \widehat {KCA} = 180^\circ - \widehat {AKC} = 180^\circ - 90^\circ = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {ACK}\) (cùng phụ với \(\widehat {KAC}\))
Xét hai tam giác vuông \(\Delta BAH\) và \(\Delta ACK\) có:
\(BA = AC\) (cmt)
\(\widehat {BAH} = \widehat {ACK}\) (cmt)
Do đó \(\Delta BAH = \Delta ACK\) (cạnh huyền – góc nhọn).
Suy ra \(BH = AK\) (hai cạnh tương ứng).
b) Tam giác \(\Delta ABC\) vuông cân tại \(A\) có \(M\) là trung điểm nên đường trung tuyến \(AM\) cũng là đường cao.
Xét tam giác \(\Delta ADC\) có \(CK\) và \(AM\) là hai đường cao cắt nhau tại \(I\).
Suy ra \(I\) là trực tâm của tam giác \(\Delta ADC\).
Nên \(DI\) cũng là đường cao của tam giác \(\Delta ADC\).
Suy ra \(DI \bot AC\) (đpcm).
c) \(\widehat {BAH} = \widehat {ACK}\) (cmt)
Tam giác \(\Delta ABC\) vuông cân tại \(A\) có \(AM\) là đường trung tuyến cũng là đường phân giác.
Khi đó \(\widehat {BAH} + \widehat {HAM} = \widehat {BAM} = 45^\circ \) và \(\widehat {ACK} + \widehat {KCM} = \widehat {ACM} = 45^\circ \).
Suy ra \[\widehat {HAM} = \widehat {KCM}\]
\(\Delta BAH = \Delta ACK\) (cmt)
Suy ra \(AH = CK\) (hai cạnh tương ứng).
Tam giác \(\Delta ABC\) vuông cân tại \(A\) nên ta có: \(AM = CM = \frac{{BC}}{2}.\)
• Xét hai tam giác vuông \(\Delta AMH\) và \(\Delta CMK\) có:
\(AM = CM\) (cmt)
\[\widehat {HAM} = \widehat {KCM}\] (cmt)
\(AH = CK\) (cmt)
Do đó \(\Delta AMH = \Delta CMK\) (c.g.c)
Suy ra \(\widehat {AHM} = \widehat {CKM}\) (hai góc tương ứng); \(MH = MK\) (hai cạnh tương ứng).
Suy ra tam giác \(\Delta MHK\) cân tại \(M\).
Do đó \(\widehat {MHK} = \widehat {MKH}\).
• Ta có: \(\widehat {CKH} = 90^\circ \)
Hay \(\widehat {CKM} + \widehat {MKH} = 90^\circ \)
\(\widehat {AHM} + \widehat {MHK} = 90^\circ \)
\(\widehat {KHM} + \widehat {MHK} = 90^\circ \)
Từ đó \(2\,.\,\widehat {MHK} = 90^\circ \)
Suy ra \(\widehat {MHK} = 45^\circ \)
Do đó \(\widehat {MKH} = 45^\circ \)
• Xét góc \(\widehat {CKH}\) có \(\widehat {CKH} = 90^\circ \)
Hay \(\widehat {CKM} + \widehat {MKH} = 90^\circ \) hay\(\widehat {CKM} + 45^\circ = 90^\circ \)
Suy ra \(\widehat {CKM} = 45^\circ \) do đó \(\widehat {MKH} = \widehat {CKM}\).
Vậy \(KM\) là đường phân giác của \(\widehat {HKC}\) (đpcm).
Cho đại lượng tỉ lệ thuận với đại lượng theo hệ số tỉ lệ . Công thức tính theo là
Cho biết và là hai đại lượng tỉ lệ nghịch. Khi thì . Giá trị của khi là
Cho hai tam giác và có ; ; . Trong khẳng định sau, khẳng định nào là sai?