Câu hỏi:
129 lượt xemLời giải
Hướng dẫn giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{a}{7} = \frac{b}{3} = \frac{c}{4} = \frac{{b + c}}{{3 + 4}} = \frac{{35}}{7} = 5\].
Do đó \[\frac{a}{7} = 5 \Rightarrow a = 5\,\,.\,\,7 = 35\];
\[\frac{b}{3} = 5 \Rightarrow b = 5\,\,.\,\,3 = 15\];
\[\frac{c}{4} = 5 \Rightarrow c = 5\,\,.\,\,4 = 20\].
Do đó \(a = 35;\,\,b = 15;\,\,c = 20\).
b) Ta có \(\frac{a}{3} = \frac{c}{5};\,\,7b = 5c\) hay \(\frac{a}{3} = \frac{c}{5};\,\,\frac{b}{5} = \frac{c}{7}\).
Do đó \(\frac{a}{{21}} = \frac{c}{{35}};\,\,\frac{b}{{25}} = \frac{c}{{35}}\) suy ra \(\frac{a}{{21}} = \frac{b}{{25}} = \frac{c}{{35}}\).
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{{21}} = \frac{b}{{25}} = \frac{c}{{35}} = \frac{{a - b + c}}{{21 - 25 + 35}} = \frac{{62}}{{31}} = 2\).
Suy ra \(a = 2\,\,.\,\,21 = 42;\;\;b = 2\,\,.\,\,25 = 50;\,\,c = 2\,\,.\,\,35 = 70\).
Vậy \(a = 42;\;\;b = 50;\,\,c = 70\).
Cho đại lượng tỉ lệ thuận với đại lượng theo hệ số tỉ lệ . Công thức tính theo là
Cho biết và là hai đại lượng tỉ lệ nghịch. Khi thì . Giá trị của khi là
Cho hai tam giác và có ; ; . Trong khẳng định sau, khẳng định nào là sai?