Câu hỏi:

77 lượt xem
Tự luận

Giải Toán 10 trang 86 Tập 2

Luyện tập 4 trang 86 Toán 10 Tập 2: Có ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.

a) Vẽ sơ đồ cây để mô tả các phần tử của không gian mẫu.

b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”. Biến cố M¯ là tập con nào của không gian mẫu?

c) Tính P(M) và P(M¯)

Xem đáp án

Lời giải

Hướng dẫn giải:

Lời giải

a) Kí hiệu 1, 2, 3 tương ứng là thẻ mang số 1, 2, 3. Khi đó ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:

Giải Toán 10 Bài 27 (Kết nối tri thức): Thực hành tính xác suất theo định nghĩa cổ điển (ảnh 1) 

Các kết quả có thể khi rút mỗi hộp một thẻ là: 121; 122; 131; 132; 221; 222; 231; 232; 321; 322; 331; 332.

⇒ Ω ={121; 122; 131; 132; 221; 222; 231; 232; 321; 322; 331; 332}

⇒ n(Ω) = 12.

b) M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”.

Khi đó M không xảy ra khi trong ba thẻ rút ra không có thẻ số 1.

Suy ra biến cố đối của biến cố M là M¯: “Trong ba thẻ rút ra không có thẻ số 1”.

⇒ M¯ = {222; 232; 322; 332}

c) Với M¯ = {222; 232; 322; 332}

⇒ n(M¯) = 4.

⇒ PM¯=nM¯nΩ=412=13.

Mặt khác, ta có P(M¯) = 1 – P(M)

⇒ P(M) = 1 – P(M¯) = 1 – 13 = 23.

Vậy P(M) = 23, P(M¯) = 13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ