Câu hỏi:

66 lượt xem

Một biến cố càng có ít khả năng xảy ra khi xác suất của biến cố đó

càng gần 0;
càng gần 1;
càng gần 12\frac{1}{2};
là một số bất kì.

Xem đáp án

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Một biến cố càng có ít khả năng xảy ra khi xác suất của biến cố đó càng gần 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

      Cho xy=ab\frac{x}{y} = \frac{a}{b}. Với điều kiện các tỉ số đều có nghĩa thì kết luận nào sau đây là sai?

ay=bxay = bx;
by=ax\frac{b}{y} = \frac{a}{x};
xa=yb\frac{x}{a} = \frac{y}{b};
xa=by\frac{x}{a} = \frac{b}{y}.

1 năm trước 44 lượt xem
Câu 14:

Cho đa thức A(x)=56x3127x2+5x+57x2+16x33x+9A\left( x \right) = \frac{5}{6}{x^3} - \frac{{12}}{7}{x^2} + 5x + \frac{5}{7}{x^2} + \frac{1}{6}{x^3} - 3x + 9.

a) Thu gọn và sắp xếp đa thức A(x)A\left( x \right) theo lũy thừa giảm dần của biến.

b) Xác định hệ số tự do của đa thức A(x)A\left( x \right) và tính A(2)A\left( 2 \right).

c) Tìm đa thức C(x)C\left( x \right) sao cho A(x)+C(x)=B(x)A\left( x \right) + C\left( x \right) = B\left( x \right), biết B(x)=x32x2+9x3B\left( x \right) = {x^3} - 2{x^2} + 9x - 3. Tìm nghiệm của đa thức C(x)C\left( x \right).

Hướng dẫn giải:

a) A(x)=56x3127x2+5x+57x2+16x33x+9A\left( x \right) = \frac{5}{6}{x^3} - \frac{{12}}{7}{x^2} + 5x + \frac{5}{7}{x^2} + \frac{1}{6}{x^3} - 3x + 9

             =(56+16)x3+(127+57)x2+(53)x+9 = \left( {\frac{5}{6} + \frac{1}{6}} \right){x^3} + \left( { - \frac{{12}}{7} + \frac{5}{7}} \right){x^2} + \left( {5 - 3} \right)x + 9

             =x3x2+2x+9 = {x^3} - {x^2} + 2x + 9.

b) Hệ số tự do của đa thức A(x)A\left( x \right) là 9.

Ta có A(2)=2322+2.2+9=17A\left( 2 \right) = {2^3} - {2^2} + 2.2 + 9 = 17.

c) Ta có A(x)+C(x)=B(x)A\left( x \right) + C\left( x \right) = B\left( x \right).

Suy ra C(x)=B(x)A(x)C\left( x \right) = B\left( x \right) - A\left( x \right)

                    =x32x2+9x3(x3x2+2x+9) = {x^3} - 2{x^2} + 9x - 3 - \left( {{x^3} - {x^2} + 2x + 9} \right)

                    =x32x2+9x3x3+x22x9 = {x^3} - 2{x^2} + 9x - 3 - {x^3} + {x^2} - 2x - 9

                    = x2+7x12 =  - {x^2} + 7x - 12.

Để tìm nghiệm của đa thức C(x)C\left( x \right), ta cho C(x)=0C\left( x \right) = 0

Do đó x2+7x12=0 - {x^2} + 7x - 12 = 0

           x2+4x+3x12=0 - {x^2} + 4x + 3x - 12 = 0

           x(x4)+3(x4)=0 - x\left( {x - 4} \right) + 3\left( {x - 4} \right) = 0

           (x+3)(x4)=0\left( { - x + 3} \right)\left( {x - 4} \right) = 0

Suy ra x=3x = 3 hoặc x=4x = 4.

Vậy nghiệm của đa thức C(x)C\left( x \right)x{3;4}x \in \left\{ {3;4} \right\}.


1 năm trước 45 lượt xem
Câu 15:

Hưởng ứng phong trào “Kế hoạch nhỏ” của trường, các chi đội 7A7A, 7B7B, 7C7C đã thu gom được tất cả 180  kg180\,\,{\rm{kg}} giấy vụn. Biết số kilôgam giấy vụn chi đội 7A7A, 7B7B, 7C7C thu gom được lần lượt tỉ lệ thuận với 6;5;46;5;4. Tính số kilôgam giấy vụn mỗi chi đội thu gom được.

Hướng dẫn giải:

Gọi xxyyzz (kg)\left( {{\rm{kg}}} \right)lần lượt là số kilôgam giấy vụn các chi đội 7A7A7B7B7C7C thu gom được.

Do ba chi đội thu gom được tất cả 180  kg180\,\,{\rm{kg}} giấy vụn nên ta có x+y+z=180x + y + z = 180.

Do số kg giấy vụn của chi đội 7A7A7B7B7C7C lần lượt tỉ lệ thuận với 6;5;46;5;4 nên:

x6=y5=z4\frac{x}{6} = \frac{y}{5} = \frac{z}{4}.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

 x6=y5=z4=x+y+z6+5+4=18015=12\frac{x}{6} = \frac{y}{5} = \frac{z}{4} = \frac{{x + y + z}}{{6 + 5 + 4}} = \frac{{180}}{{15}} = 12.

Với x6=12\frac{x}{6} = 12, ta có x=6.12=72x = 6.12 = 72.

Với y5=12\frac{y}{5} = 12, ta có y=5.12=60y = 5.12 = 60.

Với z4=12\frac{z}{4} = 12, ta có z=4.12=48z = 4.12 = 48.

Vậy số kilôgam giấy vụn các chi đội 7A7A7B7B7C7C thu gom được lần lượt là 72  kg72\,\,{\rm{kg}}60  kg{\rm{60}}\,\,{\rm{kg}} và 48  kg48\,\,{\rm{kg}}.


1 năm trước 83 lượt xem
Câu 16:

Cho ΔABC\Delta ABC cân tại AA (A^<90\widehat A < 90^\circ AB<BCAB < BC). Kẻ BDBD là tia phân giác của ABC^\widehat {ABC} (DACD \in AC). Trên cạnh BCBC lấy điểm EE sao cho AB=BEAB = BE.

a) Chứng minh ΔABD=ΔEBD\Delta ABD = \Delta EBD, từ đó suy ra AD=DEAD = DE.

b) So sánh ADADDCDC.

c) Trên tia đối của tia ABAB, lấy điểm FF sao cho AF=ECAF = EC. Gọi KK là trung điểm của FCFC. Chứng minh ba điểm BB, DD, KK thẳng hàng và xác định trực tâm của ΔDFC\Delta DFC khi BAC^=90\widehat {BAC} = 90^\circ .

 

Hướng dẫn giải:

a) Xét ΔABD\Delta ABDΔEBD\Delta EBD, có:

AB=BEAB = BE (giả thiết);

ABD^=EBD^\widehat {ABD} = \widehat {EBD} (do BDBD là tia phân giác của ABC^\widehat {ABC});

BDBD là cạnh chung.

Do đó ΔABD=ΔEBD\Delta ABD = \Delta EBD (c.g.c).

Suy ra AD=DEAD = DE (cặp cạnh tương ứng).

b) Ta có BAD^=BED^\widehat {BAD} = \widehat {BED} (do ΔABD=ΔEBD\Delta ABD = \Delta EBD).

BAD^<90\widehat {BAD} < 90^\circ nên BED^<90\widehat {BED} < 90^\circ .

BED^+DEC^=180\widehat {BED} + \widehat {DEC} = 180^\circ (hai góc kề bù).

Do đó DEC^>90\widehat {DEC} > 90^\circ .

ΔDEC\Delta DECDEC^>90\widehat {DEC} > 90^\circ nên là góc tù, do đó DCDC là cạnh lớn nhất trong tam giác.

Suy ra DC>DEDC > DE.

Lại có AD=DEAD = DE (câu a) nên DC>ADDC > AD.

c) • Ta có AB=EB,AF=ECAB = EB,AF = EC nên BF=BCBF = BC

ΔBFC\Delta BFCBF=BCBF = BC nên cân tại BB.

Suy ra đường trung tuyến BKBK đồng thời là đường phân giác, đường cao của ΔBFC\Delta BFC.

Hay BKBK là đường phân giác của ABC^\widehat {ABC}.

BDBD là đường phân giác của ABC^\widehat {ABC} (giả thiết)

Do đó ba điểm BB, DD, KK thẳng hàng.

• Khi BAC^=90\widehat {BAC} = 90^\circ ta có DABADA \bot BA

Xét ΔDFC\Delta DFCFBDC,BKFCFB \bot DC,BK \bot FCFB,BKFB,BK cắt nhau tại BB

Do đó BB là trực tâm của ΔDFC\Delta DFC.


1 năm trước 53 lượt xem