Trong 20 phút theo dõi, lưu lượng nước của một con sông được tính theo công thức
Q(t) = ,
trong đó Q được tính theo m3/phút, t tính theo phút, 0 ≤ t ≤ 20 (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016). Khi lưu lượng nước của con sông lên đến 550 m3/phút thì cảnh báo lũ được đưa ra.
Trong thời gian theo dõi, lưu lượng nước của con sông lớn nhất là bao nhiêu? Cảnh báo lũ được đưa ra vào thời điểm nào?
Giải Toán 12 (Cánh Diều) Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Số lượng sản phẩm bán được cho một công ty trong x (tháng) được tính theo công thức
trong đó .
a) Xem là một hàm số xác định trên nửa khoảng , hãy tìm tiệm cận ngang của đồ thị hàm số đó.
b) Nêu nhận xét về số lượng sản phẩm bán được của công ty đó trong x (tháng) khi x đủ lớn.
Giải Toán 12 (Cánh Diều) Bài 3: Đường tiệm cận của đồ thị hàm số
Cho hàm số có đồ thị là đường cong ở Hình 9.
a) Dựa vào đồ thị ở Hình 9, hãy cho biết các giá trị bằng bao nhiêu.
b) Giải phương trình với
c) Tính các giá trị của hàm số tại hai đầu mút và tại các điểm mà ở đó
d) So sánh M (hoặc m) với số lớn nhất (hoặc số bé nhất) trong các giá trị tính được ở câu c
Giải Toán 12 (Cánh Diều) Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Kính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery. Vận tốc của tàu con thoi trong sứ mệnh này, từ lúc cất cánh tại thời điểm cho đến khi tên lửa đẩy được phóng đi tại thời điểm , cho bởi hàm số sau:
.
(v được tính bằng ft/s, 1 feet = 0,3048 m)
Hỏi gia tốc của tàu con thoi sẽ tăng trong khoảng thời gian nào tính từ thời điểm cất cánh cho đến khi tên lửa đẩy được phóng đi?
Giải Toán 12 (Cánh Diều) Bài 1: Tính đơn điệu của hàm số