Câu hỏi:
56 lượt xemLời giải
Hướng dẫn giải:
Vì \({b^2} = ac \Rightarrow b.b = a.c \Rightarrow \frac{a}{b} = \frac{b}{c}\);
\({c^2} = bd \Rightarrow c.c = b.d \Rightarrow \frac{b}{c} = \frac{c}{d}\).
Do đó: \(\frac{a}{b} = \frac{b}{c} = \frac{c}{d}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{{a + b - c}}{{b + c - d}}\)
\( \Rightarrow {\left( {\frac{a}{b}} \right)^3} = {\left( {\frac{b}{c}} \right)^3} = {\left( {\frac{c}{d}} \right)^3} = {\left( {\frac{{a + b - c}}{{b + c - d}}} \right)^3} = \frac{{{a^3}}}{{{b^3}}} = \frac{{{b^3}}}{{{c^3}}} = \frac{{{c^3}}}{{{d^3}}}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{{{a^3}}}{{{b^3}}} = \frac{{{b^3}}}{{{c^3}}} = \frac{{{c^3}}}{{{d^3}}} = \frac{{{a^3} + {b^3} - {c^3}}}{{{b^3} + {c^3} - {d^3}}}\) (2)
Từ (1) và (2) suy ra \(\frac{{{a^3} + {b^3} - {c^3}}}{{{b^3} + {c^3} - {d^3}}} = {\left( {\frac{{a + b - c}}{{b + c - d}}} \right)^3}\) (đpcm).
Hai đại lượng tỉ lệ nghịch với nhau. Nếu và \(y = - 8\) thì hệ số tỉ lệ là
Cho bảng sau:
|
2 |
4 |
6 |
8 |
5 |
|
1 |
2 |
3 |
4 |
10 |
Khẳng định nào sau đây đúng?