Câu hỏi:

98 lượt xem
Tự luận

Cho tam giác ABCABCAB<ACAB < AC. Tia AxAx đi qua điểm MM của BC.BC. Kẻ BEBECFCF vuông góc với AxAx(E,  FAx)\left( {E,\,\,F \in Ax} \right).

a) Chứng minh BECFBE\parallel CF. Từ đó so sánh BEBEFCFC; CECEBFBF.

b) Giả sử BE=CEBE = CE. Chứng minh ΔBEM=ΔCEM\Delta BEM = \Delta CEM.

c) Tìm điều kiện về tam giác ABCABC để có BE=CEBE = CE.

Xem đáp án

Lời giải

Hướng dẫn giải:

a) Theo giả thiết: \(BE \bot Ax\), \(CF \bot Ax\)

Suy ra \(BE\parallel CF\).

• Xét \(\Delta MBE\)\(\Delta MCF\) có:

\({\widehat B_1} = {\widehat C_2}\) (hai góc so le trong);

\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));

\({\widehat M_1} = {\widehat M_3}\) (hai góc đối đỉnh).

Do đó \(\Delta MBE = \Delta MCF\) (g.c.g)

Suy ra \(BE = CF\) (hai cạnh tương ứng).

• Xét \(\Delta MBF\)\(\Delta MCE\) có:

\({\widehat B_2} = {\widehat C_1}\) (hai góc so le trong);

\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));

\({\widehat M_2} = {\widehat M_4}\) (hai góc đối đỉnh).

Do đó \(\Delta MBF = \Delta MCE\) (g.c.g)

Suy ra \(BF = CE\) (hai cạnh tương ứng).

Vậy \(BE = CF\); \(BF = CE\).

b) Xét \(\Delta BEM\)\(\Delta CEM\) có:

\(BE = CE\) (giả thiết);

\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));

\(EM\) là cạnh chung

Do đó \(\Delta BEM = \Delta CEM\) (c.c.c).

c) Từ câu b: \(\Delta BEM = \Delta CEM\)

Suy ra \(\widehat {BME} = \widehat {CME}\) (hai góc tương ứng).

Mặt khác, \(\widehat {BME} + \widehat {CME} = 180^\circ \) (hai góc kề bù) nên \(\widehat {BME} = \widehat {CME} = 90^\circ \).

Suy ra \(EM \bot BC\) hay \(AM \bot BC\).

Xét \(\Delta BAM\)\(\Delta CAM\) có:

\(BM = CM\) (vì \(M\) là trung điểm của \(BC\));

\(\widehat {BAM} = \widehat {CAM} = 90^\circ \);

\(AM\) là cạnh chung

Do đó \(\Delta BAM = \Delta CAM\) (c.g.c).

Suy ra \(AB = AC\) (hai cạnh tương ứng).

Do đó tam giác \(ABC\) cân tại \(A\).

Vậy tam giác \(ABC\) cân tại \(A\) thì \(BE = CE\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ