Câu hỏi:
36 lượt xemGiả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng. Gọi A’, B’ lần lượt là ảnh của A, B qua ĐO. So sánh tam giác OAB và tam giác O’A’B’ rồi so sánh A’B’ và AB.
Lời giải
Hướng dẫn giải:
Theo đề, ta có ĐO(A) = A’.
Suy ra O là trung điểm AA’, do đó OA = OA’.
Chứng minh tương tự, ta được OB = OB’.
Xét ∆OAB và ∆OA’B’, có:
OA = OA’ (chứng minh trên);
(đối đỉnh);
OB = OB’ (chứng minh trên).
Do đó ∆OAB = ∆OA’B’ (c.g.c).
Suy ra AB = A’B’ (cặp cạnh tương ứng).
Vậy ∆OAB = ∆OA’B’ và A’B’ = AB.
Trong Hình 6, tìm các số ghi tại điểm đối xứng qua tâm bia với điểm ghi các số 20; 7; 9.
Tìm phép đối xứng trục và phép đối xứng tâm biến Hình 7 thành chính nó.
Trong Hình 10, hình nào có tâm đối xứng? (Mỗi chữ cái là một hình).
Trong Hình 11, hình nào có trục đối xứng, hình nào có tâm đối xứng?