Lý thuyết Các phép biến đổi lượng giác (Cánh diều 2024) Toán 11
Tóm tắt lý thuyết Toán 11 Bài 2: Các phép biến đổi lượng giác ngắn gọn, chính xác sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 11.
Lý thuyết Toán 11 Bài 2: Các phép biến đổi lượng giác - Cánh diều
Bài giảng Toán 11 Bài 2: Các phép biến đổi lượng giác
A. Lý thuyết Các phép biến đổi lượng giác
I. Công thức cộng
II. Công thức nhân đôi
Suy ra, công thức hạ bậc:
III. Công thức biến đổi tích thành tổng
IV. Công thức biến đổi tổng thành tích
B. Bài tập Các phép biến đổi lượng giác
Bài 1. Cho ∆ABC. Chứng minh rằng:
a) ;
b) ;
c) , với R là bán kính đường tròn ngoại tiếp ∆ABC và S là diện tích ∆ABC.
Hướng dẫn giải
∆ABC, có: , suy ra
Do đó .
b)
Vậy ta có điều phải chứng minh.
c) VT = sin2A + sin2B + sin2C
= 2sin(A + B).cos(A – B) + 2sinC.cosC
= 2sin(180° – C).cos(A – B) + 2sinC.cosC
= 2sinC.cos(A – B) + 2sinC.cosC
= 2sinC.[cos(A – B) + cosC]
= 2sinC.[cos(A – B) + cos(180° – A – B)]
= 2sinC.[cos(A – B) – cos(A + B)]
= –4sinC.sinA.sin(–B)
= 4sinA.sinB.sinC
.
Vậy ta có điều phải chứng minh.
Bài 2. Cho , với . Tính sina, cosa, , sin2a, .
Hướng dẫn giải
Vì nên sina > 0, cosa > 0.
• Áp dụng công thức hạ bậc, ta được:
Suy ra (do sina > 0)
• Áp dụng công thức hạ bậc, ta được: .
Suy ra .
• Áp dụng công thức cộng đối với sin, ta được:
.
• Áp dụng công thức nhân đôi, ta được:
.
• Áp dụng công thức cộng đối với côsin, ta được:
Bài 3. Chứng minh rằng:
a) ;
Hướng dẫn giải
a) VT = cos3x.sinx – sin3x.cosx
= cosx.sinx.(cos2x – sin2x)
= VP.
Vậy ta có điều phải chứng minh.
Bài 4. Tính α + β biết .
Hướng dẫn giải
Áp dụng công thức cộng đối với tang, ta được:
Vậy .