Lý thuyết Cấp số cộng (Cánh diều 2024) Toán 11

Tóm tắt lý thuyết Toán 11 Bài 2: Cấp số cộng ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 11.

1 98 lượt xem


Lý thuyết Toán 11 Bài 2: Cấp số cộng - Cánh diều

A. Lý thuyết Cấp số cộng

1. Định nghĩa

Cấp số cộng là một dãy số ,trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d. Tức là:

un=un1+d,n2

Số d được gọi là công sai của cấp số cộng.

* Nhận xét: Nếu (un) là cấp số cộng thì kể từ số hạng thứ 2, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung bình cộng của 2 sô hạng đứng kề nó trong dãy, tức là:

uk=uk1+uk+12(k2)

2. Số hạng tổng quát

Nếu cấp số cộng (un) có số hạng đầu là u1 và công sai d thì số hạng tổng quát uncủa nó được xác định theo công thứcun=u1+(n1)d,n2.

3. Tổng n số hạng đầu của một cấp số cộng

Cho cấp số cộng (un)với công sai d. Đặt Sn=u1+u2+u3+...+un. Khi đó

Sn=n(u1+un)2=n2[2u1+(n1)d]

Lý thuyết Cấp số cộng – Toán 11 Cánh diều (ảnh 1)

B. Bài tập Cấp số cộng

Đang cập nhật ...

1 98 lượt xem