Lý thuyết Giới hạn của hàm số (Cánh diều 2024) Toán 11
Tóm tắt lý thuyết Toán 11 Bài 2: Giới hạn của hàm số ngắn gọn, chính xác sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 11.
Lý thuyết Toán 11 Bài 2: Giới hạn của hàm số - Cánh diều
Bài giảng Toán 11 Bài 2: Giới hạn của hàm số
A. Lý thuyết Giới hạn của hàm số
I. Giới hạn hữu hạn của hàm số tại một điểm
1. Định nghĩa
Cho khoảng K chứa điểm và hàm số xác định trên K hoặc trên . Hàm số có giới hạn là số L khi dần tới nếu với dãy số bất kì, và , ta có
Kí hiệu hay , khi .
2. Phép toán trên giới hạn hữu hạn của hàm số
a, Nếu và thì
b, Nếu với mọi và thì và .
3. Giới hạn một phía
- Cho hàm số xác định trên khoảng . Số L được gọi là giới hạn bên trái của hàm số khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
- Cho hàm số xác định trên khoảng . Số L là giới hạn bên của hàm số khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
*Nhận xét:
II. Giới hạn hữu hạn của hàm số tại vô cực
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
* Nhận xét:
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, k là một số nguyên dương ta có:
, ,.
III. Giới hạn vô cực (một phía) của hàm số tại một điểm
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi nếu với dãy số bất kì, và ta có .
Kí hiệu hay khi
- Các giới hạn được định nghĩa tương tự.
IV. Giới hạn vô cực của hàm số tại vô cực
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi về bên trái nếu với dãy số bất kì, và ta có , kí hiệu .
Kí hiệu hay khi .
- Các giới hạn được định nghĩa tương tự.
* Chú ý:
- k là số nguyên dương chẵn.
- k là số nguyên dương lẻ.
B. Bài tập Giới hạn của hàm số
Đang cập nhật ...