Lý thuyết Phép tính lũy thừa với số mũ thực (Cánh diều 2024) Toán 11

Tóm tắt lý thuyết Toán 11 Bài 1: Phép tính lũy thừa với số mũ thực ngắn gọn, chính xác sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 11.

1 170 lượt xem


Lý thuyết Toán 11 Bài 1: Phép tính lũy thừa với số mũ thực - Cánh diều

A. Lý thuyết Phép tính lũy thừa với số mũ thực

1. Phép tính lũy thừa với số mũ nguyên

Cho số thực a khác 0 và số nguyên dương n. Ta đặt an=1an.

Chú ý:

00 và 0n (n nguyên dương) không có nghĩa.

- Lũy thừa với số mũ nguyên có các tính chất tương tự của lũy thừa với số mũ nguyên dương.

2. Căn bậc n

a) Định nghĩa

Cho số thực a và số nguyên dương n (n  2). Số b được gọi là căn bậc n của số a nếu bn=a.

Nhận xét:

- Với n lẻ và a R: Có duy nhất một căn bậc n của a, kí hiệu là an.

- Với n chẵn, ta xét ba trường hợp sau:

+) a < 0: Không tồn tại căn bậc n của a.

+) a = 0: Có một căn bậc n của a là số 0.

+) a > 0: Có hai căn bậc n của a là hai số đối nhau, giá trị dương kí hiệu là an, còn giá trị âm kí hiệu là an.

b) Tính chất

  • ann={anếunl|a|nếunchn
  • an.bn=abn
  • anbn=abn
  • (an)m=amn
  • akn=ank

(Ở mỗi công thức trên, ta giả sử các biểu thức xuất hiện trong đó là có nghĩa).

3. Phép tính lũy thừa với số mũ hữu tỉ

Cho số thực a dương và số hữu tỉ r=mn, trong đó mZ,nN,n2. Lũy thừa của a với số mũ r xác định bởi: ar=amn=amn.

Nhận xét:

  • a1n=an(a>0,nN,n2).
  • Lũy thừa với số mũ hữu tỉ của số thực dương có đầy đủ các tính chất của lũy thừa với số mũ nguyên.

4. Phép tính lũy thừa với số mũ thực

a) Định nghĩa

Cho a là số thực dương, α là số vô tỉ, (rn) là dãy số hữu tỉ và limrn=α. Giới hạn của dãy số (arn) gọi là lũy thừa của a với số mũ α, kí hiệu aαaα=limarn.

b) Tính chất

- Cho a, b là những số thực dương; α,β là những số thực tùy ý. Khi đó, ta có:

aα.aβ=aα+β(ab)α=aα.bα(ab)α=aαbαaαaβ=aαβ(aα)β=aαβ.

- Nếu a > 1 thì aα>aβα>β.

Nếu 0 < a < 1 thì aα>aβα<β.

- Cho 0 < a < b, α là một số thực. Ta có:

aα<bαα>0aα>bαα<0.

Sơ đồ tư duy Phép tính lũy thừa với số mũ thực

Lý thuyết Phép tính lũy thừa với số mũ thực (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

B. Bài tập Phép tính lũy thừa với số mũ thực

Đang cập nhật ...

1 170 lượt xem