Trong mặt phẳng tọa độ Oxy, cho các điểm A(–4; 2), B(–4; 5) và C(–1; 3).
a) Chứng minh các điểm A’(2; 4), B’(5; 4) và C’(3; 1) theo thứ tự là ảnh của A, B, C qua phép quay tâm O với góc quay –90°.
b) Gọi ∆A1B1C1 là ảnh của ∆ABC qua phép dời hình có được bằng cách thực hiện phép quay tâm O với góc quay –90° và phép đối xứng qua Ox. Tìm tọa độ các đỉnh của ∆A1B1C1.
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 5: Phép quay
Kính lục phân là một dụng cụ quang học sử dụng gương quay để thực hiện phép quay Q(O, φ) biến tia Ox (song song với đường chân trời) thành tia Oy (song song với trục Trái Đất), nhờ đó đo được góc φ giữa trục của Trái Đất và đường chân trời tại vị trí của người đo. Hãy giải thích tại sao góc φ của phép quay này lại cho ta vĩ độ tại điểm sử dụng kính.
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 5: Phép quay
a) Tìm phép biến hình biến ∆BAC thành ∆BA’C’ (Hình 1).
b) Trong mặt phẳng, cho điểm O cố định (Hình 2).
Gọi f là quy tắc ứng với mỗi điểm M trùng O cho ta điểm O và ứng với điểm M khác O cho ta một điểm M’ xác định như sau:
– Dùng compa vẽ đường tròn (C) tâm O bán kính OM.
– Trên (C) chọn điểm M’ sao cho góc lượng giác (OM, OM’) bằng 60°.
Quy tắc f có phải là một phép biến hình không?
Hãy vẽ điểm M’ theo quy tắc trên nếu thay góc 60° bởi góc –30°.
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 5: Phép quay
Vẽ mỗi hình sau ra một tờ giấy, cắt rời mỗi hình theo hình tròn. Tìm một điểm O trên mỗi hình. Sau đó, ghim hình đã cắt được xuống mặt bàn tại điểm O, thử xoay hình một góc φ nào đó. Có nhận xét gì về kích thước của hình trước khi xoay và sau khi xoay?
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 5: Phép quay
Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau:
– Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a).
– Vẽ hoa và lá trên bề mặt tam giác (Hình 14b).
– Dùng kéo cắt theo đường đã vẽ (Hình 14c).
– Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d).
Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm.
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 4: Phép đối xứng tâm
Vận dụng phép đối xứng trục để vẽ nhanh bình hoa theo hướng dẫn trong Hình 14.
– Gấp đôi một tờ giấy trắng A4 theo nếp gấp d.
– Mở tờ giấy ra, ở một phía của nếp gấp d, nhỏ vài giọt màu nước có màu khác nhau làm hoa và một giọt màu đen làm bình hoa.
– Gấp lại tờ giấy theo nếp gấp d, chà nhẹ để màu thấm đều sang hai bên.
– Mở tờ giấy ra, ta có một bình hoa đẹp.
Tìm trục đối xứng của hình vừa vẽ.
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 3: Phép đối xứng trục
Hai thành phố A, B nằm ở hai bên bờ của một con sông (Hình 13). Giả sử hai bờ sông là hai đường thẳng song song a, b. Tìm vị trí điểm M bên bờ a và N bên bờ b để xây dựng một chiếc cầu MN sao cho MN vuông góc với a, b và tổng khoảng cách AM + NB ngắn nhất.
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 3: Phép đối xứng trục
Cho tam giác ABC với B và C cố định. Vẽ hai đường tròn có tâm lần lượt là B, C và đi qua A. Gọi D là giao điểm thứ hai của hai đường tròn nói trên (Hình 12). Khi A di động trên một đường tròn cố định (O) thì điểm D di động trên đường nào?
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 3: Phép đối xứng trục
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)2 + (y – 4)2 = 25 và đường thẳng ∆: 2x + 3y + 4 = 0.
a) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Ox.
b) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Oy.
c) Tìm ảnh của (C) và ∆ qua phép đối xứng trục d: x – y – 3 = 0.
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 3: Phép đối xứng trục
Cho hai điểm A, B là vị trí của hai nhà máy nằm cùng một phía bờ sông là đường thẳng d. Tìm trên bờ sông một địa điểm M để xây dựng một trạm bơm sao cho tổng chiều dài đường ống dẫn nước từ trạm bơm về hai nhà máy là ngắn nhất (Hình 7).
Chuyên đề Toán 11 (Chân trời sáng tạo) Bài 3: Phép đối xứng trục