a) Nêu định nghĩa hàm số đồng biến, hàm số nghịch biến trên tập , trong đó K là một khoảng, đoạn hoặc nửa khoảng.
b) Cho hàm số có đồ thị như Hình 2.
- Xác định khoảng đồng biến, nghịch biến của hàm số đó.
- Xét dấu đạo hàm .
- Nêu mối liên hệ giữa sự đồng biến, nghịch biến của hàm số và dấu của đạo hàm trên mỗi khoảng .
- Hoàn thành bảng biến thiên sau:
Giải Toán 12 (Cánh Diều) Bài 1: Tính đơn điệu của hàm số
Điện trở R(Ω) của một đoạn dây dẫn hình trụ được làm từ vật liệu có điện trở suất ρ (Ωm), chiều dài ℓ (m) và tiết diện S (m2) được cho bởi công thức
(Vật lí 11 — Chân trời sáng tạo, Nhà xuất bản Giáo dục Việt Nam, 2023, trang 104)
Giả sử người ta khảo sát sự biến thiên của điện trở R theo tiết diện S (ở nhiệt độ 20 °C) của một sợi dây điện dài 10 m làm từ kim loại có điện trở suất ρ và thu được đồ thị hàm số như Hình 6.
a) Có nhận xét gì về sự biến thiên của điện trở R theo tiết điện S?
b) Từ đồ thị, hãy giải thích ý nghĩa của toạ độ giao điểm của đồ thị hàm số với đường thẳng R = 0,001.
c) Tính điện trở suất ρ của dây điện. Từ đó, hãy cho biết dây điện được làm bằng kim loại nào trong số các kim loại được cho ở bảng sau:
Giải Toán 12 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 37
Trong một nhà hàng, mỗi tuần để chế biến x phần ăn (x lấy giá trị trong khoảng từ 30 đến 120) thì chi phí trung bình (đơn vị: nghìn đồng) của một phần ăn được cho bởi công thức:
a) Khảo sát và vẽ đồ thị hàm số trên [30; 120].
b) Từ kết quả trên, tìm số phần ăn sao cho chi phí trung bình của một phần ăn là thấp nhất.
Giải Toán 12 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 37
Cho một hình trụ nội tiếp trong hình nón có chiều cao bằng 12 cm và bán kính đáy bằng 5 cm (Hình 4a). Người ta cắt hình nón, trụ này theo mặt phẳng chứa đường thẳng nối đỉnh và tâm hình tròn đáy của hình nón thì thu được một hình phẳng như Hình 4b.
a) Chứng minh rằng công thức tính bán kính r của đáy hình trụ theo chiều cao h của nó là: .
b) Chứng minh biểu thức sau biểu thị thể tích khối trụ theo h: .
c) Tìm h để khối trụ có thể tích lớn nhất.
Giải Toán 12 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 37
Cho hàm số .
a) Khảo sát và vẽ đồ thị của hàm số.
b) Gọi A là giao điểm của đồ thị hàm số với trục Oy, I là giao điểm của hai đường tiệm cận của đồ thị hàm số. Tìm điểm B đối xứng với A qua I. Chứng minh rằng điểm B cũng thuộc đồ thị hàm số này.
Giải Toán 12 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 37
Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng?
A. Hàm số đồng biến trên (– ∞; – 4) và nghịch biến trên (– 4; + ∞).
B. Hàm số đồng biến trên (– ∞; 4) và (4; + ∞).
C. Hàm số nghịch biến trên (– ∞; 4) và (4; + ∞).
D. Hàm số nghịch biến trên (– ∞; – 4) và (– 4; + ∞).
Giải Toán 12 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 37
Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng?
A. Hàm số đạt cực tiểu tại x = 3, giá trị cực tiểu là y = 2.
B. Hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là y = 6.
C. Hàm số đạt cực tiểu tại x = 3, giá trị cực tiểu là y = 6.
D. Hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là y = 2.
Giải Toán 12 (Chân trời sáng tạo) Bài tập cuối chương 1 trang 37
Bạn Việt muốn dùng tấm bìa hình vuông cạnh 6 dm làm một chiếc hộp không nắp, có đáy là hình vuông bằng cách cắt bỏ đi 4 hình vuông nhỏ ở bốn góc của tấm bìa (Hình 11).
Bạn Việt muốn tìm độ dài cạnh hình vuông cần cắt bỏ để chiếc hộp đạt thể tích lớn nhất.
a) Hãy thiết lập hàm số biểu thị thể tích hộp theo x với x là độ dài cạnh hình vuông cần cắt đi.
b) Khảo sát và vẽ đồ thị hàm số tìm được.
Từ đó, hãy tư vấn cho bạn Việt cách giải quyết vấn đề và giải thích vì sao cần chọn giá trị này. (Làm tròn kết quả đến hàng phần mười.)
Giải Toán 12 (Chân trời sáng tạo) Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản
Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0), d' là khoảng cách từ thấu kính đến ảnh (ảnh thật thì d' > 0, ảnh ảo thì d' < 0). Ta có công thức:
hay .
(Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 182, 187).
Xét trường hợp f = 3, đặt x = d, y = d'. Ta có hàm số và x ≠ 3.
a) Khảo sát và vẽ đồ thị của hàm số trên.
b) Dựa vào đồ thị hàm số trên, hãy cho biết vị trí của vật để ảnh của vật là: ảnh thật, ảnh ảo.
c) Khi vật tiến gần đến tiêu điểm thì ảnh thay đổi như thế nào?
Giải Toán 12 (Chân trời sáng tạo) Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản
Giả sử chi phí tiền xăng C (đồng) phụ thuộc tốc độ trung bình v (km/h) theo công thức:
Để biểu diễn trực quan sự thay đổi của C(v) theo v, người ta đã vẽ đồ thị hàm số C = C(v) như hình bên. Làm thế nào để vẽ được đồ thị hàm số này?
Giải Toán 12 (Chân trời sáng tạo) Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản
Nồng độ oxygen trong hồ theo thời gian t cho bởi công thức , với y được tính theo mg/l và t được tính theo giờ, t ≥ 0. Tìm các đường tiệm cận của đồ thị hàm số y = y(t). Từ đó, có nhận xét gì về nồng độ oxygen trong hồ khi thời gian t trở nên rất lớn.
Giải Toán 12 (Chân trời sáng tạo) Bài 3: Đường tiệm cận của đồ thị hàm số