Lý thuyết Tứ giác (Chân trời sáng tạo 2024) Toán 8
Tóm tắt lý thuyết Toán 8 Bài 2: Tứ giác ngắn gọn, chính xác sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 8.
Lý thuyết Toán lớp 8 Bài 2: Tứ giác
A. Lý thuyết Tứ giác
1. Khái niệm
Tứ giác ABCD là một hình gồm bốn đoạn thẳng AB, BC, CD và DA, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
Ví dụ:
Đặc điểm
+ Có 4 đỉnh
+ Có 4 cạnh
Tứ giác lồi là tứ giác luôn nằm về một phía của đường thẳng chứa bất kỳ cạnh nào của tứ giác đó.
Ví dụ: ABCD là tứ giác lồi, EFGH không phải là tứ giác lồi.
2. Tính chất
+ Hai cạnh kề nhau là hai cạnh chung đỉnh.
+ Hai cạnh kề nhau tạo thành góc của tứ giác.
+ Hai cạnh đối nhau không chung đỉnh.
+ Hai đỉnh đối nhau là hai đỉnh không cùng nằm trên một cạnh.
+ Đường chéo là đoạn thẳng nối hai đỉnh đối nhau.
3. Định lí tổng các góc của một tứ giác
Tổng số đo các góc của một tứ giác bằng .
Tứ giác ABCD,
Ví dụ:
ˆB=3600−930−1230−750=690
B. Bài tập Tứ giác
Bài 1. Tính x trong mỗi hình sau:
Hướng dẫn giải
a) Theo định lí tổng các góc của một tứ giác, trong tứ giác ABCD có:
Suy ra
Vậy .
b) Theo định lí tổng các góc của một tứ giác, trong tứ giác EGHF có:
Suy ra
Vậy
Bài 2. Cho bốn điểm E, F, G, H (hình vẽ).
Vẽ một tứ giác có các đỉnh là bốn điểm đã cho và tìm các yếu tố sau:
a) cạnh kề, cạnh đối của cạnh GH.
b) góc đối của .
c) hai đường chéo của tứ giác.
Hướng dẫn giải
a) Cạnh kề của cạnh GH là cạnh GF; cạnh đối của cạnh GH là cạnh EF.
b) Góc đối của là
c) Hai đường chéo của tứ giác là EG và FH.
Bài 3.Tứ giác ABCD có ; ; . Tính số đo các góc A và D.
Hướng dẫn giải
Theo giả thiết: nên
Theo định lí tổng các góc của một tứ giác, trong tứ giác ABCD có:
Suy ra
Vậy
Video bài giảng Toán 8 Bài 2: Tứ giác - Chân trời sáng tạo