Câu hỏi:

229 lượt xem
Tự luận

Ba đội công nhân cùng chuyển một khối lượng gạch như nhau. Thời gian để đội thứ nhất, đội thứ hai và đội thứ ba làm xong công việc lần lượt là 22 giờ, 33 giờ, 44 giờ. Tính số công nhân tham gia làm việc của mỗi đội, biết rằng số công nhân của đội thứ ba ít hơn số công nhân của đội thứ hai là 55 người và năng suất lao động của các công nhân là như nhau.

Xem đáp án

Lời giải

Hướng dẫn giải:

Gọi \(x,y,z\) lần lượt là số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba.

Số công nhân của đội thứ ba ít hơn số công nhân của đội thứ hai là \(5\) người nên \(y - z = 5\)

Với cùng một khối lượng công việc, số công nhân tham gia làm việc và thời gian hoàn thành công việc của mỗi đội là hai đại lượng tỉ lệ nghịch với nhau.

Do đó, ta có \(2x = 3y = 4z\) suy ra \(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{4}}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{{\frac{1}{2}}} = \frac{y}{{\frac{1}{3}}} = \frac{z}{{\frac{1}{4}}} = \frac{{y - z}}{{\frac{1}{3} - \frac{1}{4}}} = \frac{5}{{\frac{1}{{12}}}} = 60\).

Từ đó suy ra \(x = 60.\frac{1}{2} = 30\), \(y = 60.\frac{1}{3} = 20\), \(z = 60.\frac{1}{4} = 15\).

Vậy số công nhân tham gia làm việc của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là \(30\) người, \(20\) người, \(15\) người.

CÂU HỎI HOT CÙNG CHỦ ĐỀ