Câu hỏi:

156 lượt xem
Tự luận

Cho hình vẽ sau, biết ABC^=80\widehat {ABC} = 80^\circ Am//CpAm\,{\rm{//}}\,Cp.

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.

b) Giải thích tại sao hai đường thẳng BnBnCpCp song song với nhau. Từ đó suy ra hai đường thẳng AmAmBnBn song song với nhau.

c) Kẻ BxBx là tia đối của tia BnBn. Chứng minh BxBx là tia phân giác của ABC^\widehat {ABC}.

Xem đáp án

Lời giải

Hướng dẫn giải:

a) Học sinh vẽ lại hình theo đúng số đo các góc.

GT

\(\widehat {ABC} = 80^\circ \); \(\widehat {CBn} = \widehat {BCp} = \widehat {BAm} = 140^\circ \) \(Am\,{\rm{//}}\,Cp\).

c) Kẻ \(Bx\) là tia đối của tia \(Bn\).

KL

b) Giải thích \(Am\,{\rm{//}}\,Bn\), \(Am\,{\rm{//}}\,Bn\).

c) \(Bx\) là tia phân giác của \(\widehat {ABC}\).

b) Ta có \(\widehat {CBn} = \widehat {BCp} = 140^\circ \)

Mà hai góc này ở vị trí so le trong.

Suy ra \(Bn\,{\rm{//}}\,Cp\) (dấu hiệu nhận biết)

Lại có \(Am\,{\rm{//}}\,Cp\) (giả thiết) nên \(Am\,{\rm{//}}\,Bn\).

c) Vì \(Am\,{\rm{//}}\,Bn\) nên \(\widehat {ABn} = \widehat {BAm} = 140^\circ \) (cặp góc so le trong).

Ta có \(\widehat {ABn} + \widehat {ABx} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {ABx} = 180^\circ  - \widehat {ABn} = 40^\circ \).

Tương tự, ta được \(\widehat {CBx} = 40^\circ \).

Khi đó \(\widehat {ABx} = \widehat {CBx} = \frac{{\widehat {ABC}}}{2} = 40^\circ \).

Vậy \(Bx\) là tia phân giác của \(\widehat {ABC}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ