Câu hỏi:

128 lượt xem
Tự luận

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và SC = a2 . Gọi H là trung điểm của cạnh AB.

a) Chứng minh rằng SH  (ABCD).

b) Tính theo a thể tích khối chóp S.ABCD.

c) Tính theo a khoảng cách từ điểm A đến mặt phẳng (SBD).

Xem đáp án

Lời giải

Hướng dẫn giải:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều

a) ABCD là hình vuông cạnh a nên AB = BC = CD = DA = a.

Do tam giác SAB đều cạnh a và H là trung điểm của AB nên SH  AB và SH = a32 ; AH = BH = AB2=a2 .

Xét tam giác BHC vuông tại B có HC = BC2+BH2=a2+a24=a52 .

Có SC2=a22=2a2 ; SH2+HC2=a322+a522=2a2 .

Suy ra SC2 = SH2 + HC2. Do đó tam giác SHC vuông tại H hay SH  HC mà SH  AB nên SH  (ABCD).

b) Ta có VS.ABCD=13SABCDSH=13a2a32=a336 .

c) Vì H là trung điểm của AB nên d(A, (SBD)) = 2 . d(H, (SBD)).

Kẻ HK  BD tại K, HQ  SK tại Q.

Ta có SH  (ABCD) nên SH  BD mà HK  BD nên BD  (SHK), suy ra BD HQ.

Vì BD  HQ và HQ  SK nên HQ  (SBD), suy ra d(H, (SBD)) = HQ.

Xét tam giác ABC vuông tại B, có AC = AB2+BC2=a2+a2=a2 .

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD, suy ra AO = AC2 .

Xét tam giác ABO có HK là đường trung bình nên HK = AO2=AC4=a24.

Xét tam giác SHK vuông tại H, HQ là đường cao, ta có

1HQ2=1SH2+1HK2=43a2+162a2=283a2HQ=a2114.

Vậy d(A,(SBD)) = 2HQ = a217.

CÂU HỎI HOT CÙNG CHỦ ĐỀ