Lý thuyết Đơn thức nhiều biến. Đa thức nhiều biến (Cánh diều 2024) Toán 8

Tóm tắt lý thuyết Toán 8 Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến ngắn gọn, chính xác sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 8.

1 206 lượt xem


Lý thuyết Toán 8 Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến - Cánh diều

Bài giảng Toán 8 Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến - Cánh diều

A. Lý thuyết Đơn thức nhiều biến. Đa thức nhiều biến

1. Đơn thức nhiều biến

Đơn thức nhiều biến (hay đơn thức) là biểu thức đại số chỉ gồm một số hoặc một biến, hoặc một tích giữa các số và các biến.

Số 0 được gọi là đơn thức không.

Ví dụ: 1;2xy;34x2y(4x);... là các đơn thức.

Đơn thức thu gọn là đơn thức chỉ gồm một số với các biến, mà mỗi biến đã được nâng lên lũy thừa với số mũ nguyên dương và chỉ được viết một lần.

Ví dụ:

1;2xy;5x2y4z;... là các đơn thức thu gọn.

3x2yx;34x2y(4x);... không phải là các đơn thức thu gọn.

Trong một đơn thức thu gọn, phần số còn gọi là hệ số, phần còn lại gọi là phần biến.

Ví dụ: đơn thức 3x3.y có hệ số là 3, phần biến là x3.y.

Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.

Ví dụ:

Hai đơn thức 5x2y4z và 13x2y4z có hệ số khác 0 và có cùng phần biến nên chúng là hai đơn thức đồng dạng.

Hai đơn thức 5x2y4z và 5xy2z không có cùng phần biến nên chúng không phải là hai đơn thức đồng dạng.

Cộng, trừ các đơn thức đồng dạng

Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.

Ví dụ:

2x3y2+4x3y2=6x3y24ay23ay2=ay2

2. Đa thức nhiều biến

Đa thức nhiều biến (hay đa thức) là một tổng của những đơn thức.

Chú ý: Mỗi đơn thức được gọi là một đa thức.

Ví dụ: x24x+3;x2+3xyz2yz+1;(x+3y)+(2xy) là đa thức.

x+yxy,x2+2x2y2 không phải là đa thức.

Thu gọn đa thức nhiều biến là làm cho trong đa thức đó không còn hai đơn thức nào đồng dạng.

Ví dụ:

A=x32x2yx2y+3xy2y3=x33x2y3xy2y3

Tính giá trị của đa thức

Để tính giá trị của một đa thức tại những giá trị cho trước của các biến, ta thay những giá trị cho trước đó vào biểu thức xác định đa thức rồi thực hiện phép tính.

Ví dụ: Giá trị của biểu thức x24xy+3y2 tại x = 2, y = 1 là: 224.2.1+3.12=1

 

B. Bài tập Đơn thức nhiều biến. Đa thức nhiều biến

Bài 1. Tính giá trị của đa thức sau:

P = x2y – 12x3y + xy – 27 tại x = 1; y = 2.

Hướng dẫn giải

Thay x = 1; y = 2 vào biểu thức P, ta được:

P = 12 . 2 – 12 . 13 . 2 + 1 . 2 – 27

= 2 – 24 + 2 – 27 = – 47.

Vậy với x = 1; y = 2 thì giá trị của biểu thức P = – 47.

Bài 2. Thu gọn các đa thức sau:

a) 15xy + 3 + 2xy +5;

b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15.

Hướng dẫn giải

a) 15xy + 3 + 2xy +5 = (15xy + 2xy) + (3 + 5)

= 17xy + 8.

b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15

= (2,7x2y – 1,7x2y) + (1,3xy+ 4,7xy2) – 15

= x2y + 6xy2 – 15.

Bài 3. Thu gọn các đơn thức sau:

a) 12xy5x3y2z;

b) 12x2y3y3z.

Hướng dẫn giải

a) 12xy5x3y2z = 12 . (x . x3) . (y5.y2) . z

= 12x4y7z

b) 12x2y3y3z = 12. x2 . ( y3 . y3) . z

12x2y5z

1 206 lượt xem