Câu hỏi:
140 lượt xemGiải Toán 10 trang 41 Tập 2
Vận dụng trang 41 Toán 10 Tập 2:
Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15m, chiều rộng AB = 12m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5m, CF = 6m (H.7.11)
a) Chọn hệ trục toạ độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng toạ độ tương ứng 1m trong thực tế. Hãy xác định toạ độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.
b) Nam đứng ở vị trí B câu cá có thể quăng lưỡi câu xa 10,7 m . Hỏi lưỡi câu có thể rơi vào ao nuôi vịt hay không ?
Lời giải
Hướng dẫn giải:
Lời giải
a) Đặt hệ trục tọa độ như hình vẽ:
Vì ABCD là hình chữ nhật nên ta có: AD = BC = 15m, AB = DC = 12m, AE = 5m, CF = 6m.
Khi đó, toạ các điểm lần lượt là: C(15; 0), A(0; 12), E(5; 12), D(15; 12), F(15; 6), B(0; 0).
Ta có: = (10; -6)
Đường thẳng EF đi qua điểm E(5; 12) và nhận = = (5, -3) làm vectơ chỉ phương do đó vectơ pháp tuyến của đường thẳng EF là: (3; 5)
Suy ra phương trình tổng quát của đường thẳng EF là: 3(x – 5) + 5(y – 12) = 0 hay 3x + 5y – 75 = 0.
Vậy phương trình tổng quát của đường thẳng EF là 3x + 5y – 75 = 0.
b) Khoảng cách từ điểm B đến đường thẳng EF là:
d(B, EF) = = ≈ 12,86 > 10,7
Vậy nếu Nam đứng ở vị trí B câu cá thì lưỡi câu không thể rơi vào ao nuôi vịt.
Luyện tập 3 trang 39 Toán 10 Tập 2:
Tính góc giữa hai đường thẳng ∆1: và ∆2:.
Luyện tập 5 trang 40 Toán 10 Tập 2: Tính khoảng cách từ điểm M(1; 2) đến đường thẳng ∆: