Giải Toán 10 (Kết nối tri thức) Bài 10: Vectơ trong mặt phẳng tọa độ
Sinx.edu.vn xin giới thiệu giải bài tập Toán lớp 10 Bài 10: Vectơ trong mặt phẳng tọa độ sách Kết nối tri thức hay nhất, chi tiết giúp học sinh so sánh và làm bài tập Toán 10 dễ dàng. Mời các bạn đón xem:
Nội dung bài viết
Giải bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ
Mở đầu
Mở đầu trang 60 Toán 10 Tập 1: Một bản tin dự báo thời tiết thể hiện đường đi trong 12 giờ của một cơn bão trên một mặt phẳng tọa độ. Trong thời gian đó, tâm bão di chuyển thẳng đều từ vị trí có tọa độ (13,8; 108,3) đến vị trí tọa độ (14,1; 106,3). Dựa vào thông tin trên, liệu ta có thể dự đoán được vị trí của tâm bão tại thời điểm bất kì trong khoảng thời gian 12 giờ đó hay không?
Sau bài học này ta có thể trả lời câu hỏi trên như sau:
Gọi M(x; y) là vị trí của tâm bão tại thời điểm bất kì t giờ trong khoảng thời gian 12 giờ.
Do bão di chuyển thẳng đều từ A(13,8; 108,3) tới vị trí có tọa độ B(14,1; 106,3) nên điểm M thuộc đoạn thẳng AB.
Theo dự báo, tại thời điểm t giờ thì tâm bão đã đi được một khoảng AM là:
Hay
Vectơ cùng hướng với vectơ và nên
Ta có: A(13,8; 108,3); B(14,1; 106,3); M(x; y)
Suy ra
Ta có:
Vậy ở thời điểm t giờ tâm bão là điểm M ở vị trí
Giải Toán 10 trang 60 Tập 1
HĐ 1 trang 60 Toán 10 Tập 1: Trên trục số Ox, gọi A là điểm biểu diễn số 1 và đặt (H.4.32a). Gọi M là điểm biểu diễn số 4, N là điểm biểu diễn số Hãy biểu thị mỗi vectơ theo vectơ đơn vị
Trên hình vẽ ta thấy:
+) Vectơ cùng hướng với vectơ và OM = 4 = 4.1 = 4OA
Nên .
+) Vectơ ngược hướng với vectơ và ON = OA
Nên .
Vậy và .
Giải Toán 10 trang 61 Tập 1
HĐ 2 trang 61 Toán 10 Tập 1: Trong Hình 4.33:
a) Hãy biểu thị mỗi vectơ theo các vectơ .
b) Hãy biểu thị vectơ theo các vectơ từ đó biểu thị vectơ theo các vectơ .
Giả sử các điểm A, B, C, D được biểu diễn như hình vẽ trên.
Khi đó
a) OAMB là hình bình hành suy ra (quy tắc hình bình hành)
Do đó
OCND là hình bình hành suy ra (quy tắc hình bình hành)
Do đó
b) Ta có: (quy tắc ba điểm)
Vậy
Luyện tập 1 trang 61 Toán 10 Tập 1: Tìm tọa độ của .
Ta có: .
Vậy vectơ có toạ độ là (0; 0).
2. Biểu thức tọa độ của các phép toán vecto
HĐ 3 trang 61 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho
a) Hãy biểu thị mỗi vectơ theo các vectơ
c) Tìm mối liên hệ giữa hai vectơ
a) Ta có:
b) Ta có:
Vậy toạ độ của vectơ là (6; ‒2) và toạ độ của vectơ là (8; ‒12).
c) Ta có và
Suy ra .
Vậy .
Giải Toán 10 trang 62 Tập 1
HĐ 4 trang 62 Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy, cho điểm M(x0;y0).
Gọi P, Q tương ứng là hình chiếu vuông góc của M trên trục hoành Ox và trục tung Oy (H.4.35).
a) Trên trục Ox, điểm P biểu diễn số nào? Biểu thị theo và tính độ dài của theo x0.
b) Trên trục Oy, điểm Q biểu diễn số nào? Biểu thị theo và tính độ dài của theo y0.
c) Dựa vào hình chữ nhật OPMQ, tính độ dài của theo x0, y0.
a) Trên trục Ox, điểm P biểu diễn cho số x0 nên OP = |x0| = x0.
Ta có vectơ cùng hướng với vectơ và OP = x0 nên
Vậy
b) Trên trục Oy, điểm Q biểu diễn cho số y0 nên OQ = |y0| = y0.
Ta có vectơ cùng hướng với vectơ và OQ = y0 nên
Vậy
c) Xét tam giác OPM vuông tại P, theo định lí Pythagore ta có: OM2 = OP2 + MP2
Do đó
Vậy
d) Ta có .
Vậy
HĐ 5 trang 62 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho các điểm M(x; y) và N(x'; y').
b) Biểu thị vectơ theo các vectơ và tìm tọa độ của
a) Ta có M(x; y) nên vectơ có toạ độ (x; y).
N(x'; y') nên vectơ có toạ độ (x'; y').
b) Ta có: (quy tắc ba điểm)
Mà tọa độ của vectơ là (x' – x; y' – y).
Vậy
c) Độ dài của vectơ là
Giải Toán 10 trang 63 Tập 1
Luyện tập 2 trang 63 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 1), B(3; 3).
a) Các điểm O, A, B có thẳng hàng hay không?
b) Tìm điểm M(x;y) để OABM là một hình bình hành.
a) Ta có: A(2; 1) suy ra
B(3; 3) suy ra
Hai vectơ không cùng phương (vì ).
Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.
Vậy ba điểm O, A, B không thẳng hàng.
b) Các điểm O, A, B không thẳng hàng nên tứ giác OABM là hình bình hành khi và chỉ khi
Ta có: nên
Vậy điểm cần tìm là M(1;2).
Giải Toán 10 trang 64 Tập 1
Vận dụng trang 64 Toán 10 Tập 1: Từ thông tin dự báo bão được đưa ra ở đầu bài học, hãy xác định tọa độ vị trí M của tâm bão tại thời điểm 9 giờ trong khoảng thời gian 12 giờ dự báo.
Do bão di chuyển thẳng đều từ A(13,8; 108,3) tới vị trí có tọa độ B(14,1; 106,3) nên điểm M thuộc đoạn thẳng AB.
Theo dự báo, tại thời điểm 9 giờ thì tâm bão đã đi được một khoảng AM là:
Hay
Vectơ cùng hướng với vectơ và nên
Ta có: A(13,8; 108,3); B(14,1; 106,3); M(x; y)
Suy ra
Ta có:
Vậy ở thời điểm 9 giờ tâm bão là điểm M ở vị trí M(14,025; 106,8).
Bài tập
Giải Toán 10 trang 65 Tập 1
Bài 4.16 trang 65 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho các điểm M(1;3), N(4;2).
a) Tính độ dài của các đoạn thẳng OM, ON, MN.
b) Chứng minh rằng tam giác OMN vuông cân.
a) Ta có:
b) Xét tam giác OMN, có: suy ra tam giác OMN cân tại M. (1)
Ta có:
Theo định lí Pythagore đảo suy ra tam giác OMN vuông tại M. (2)
Từ (1) và (2) suy ra tam giác OMN vuông cân tại M.
Vậy tam giác OMN vuông cân tại M.
Bài 4.17 trang 65 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho các vectơ và các điểm M(‒3;6), N(3;‒3).
a) Tìm mối liên hệ giữa các vectơ và
b) Các điểm O, M, N có thẳng hàng hay không?
c) Tìm điểm P(x;y) để OMNP là hình bình hành.
a) Ta có:
b) Ta có
+ M(-3; 6)
+) N(3;‒3)
Hai vectơ không cùng phương (vì ).
Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.
Vậy ba điểm O, M, N không thẳng hàng.
c)
Các điểm O, M, N không thẳng hàng, tứ giác OMNP là hình bình hành khi và chỉ khi
Ta có: M(‒3;6); N(3;‒3) và P(x; y)
Do đó
Vậy điểm cần tìm là P(6;‒9).
Bài 4.18 trang 65 Toán 10 Tập 1: Trong mặt phẳng tọa độ Oxy, cho các điểm A(1;3), B(2;4), C(‒3;2).
a) Chứng minh rằng ABC là ba đỉnh của một tam giác.
b) Tìm tọa độ trung điểm M của đoạn thẳng AB.
c) Tìm tọa độ trọng tâm G của tam giác ABC.
d) Tìm điểm D(x; y) để O(0;0) là trọng tâm tam giác ABD.
a) Ta có: A(1;3), B(2;4), C(‒3;2).
Suy ra:
Hai vectơ không cùng phương (vì ).
Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.
Vậy ba điểm A, B, C không thẳng hàng.
Vậy ba điểm A, B, C là ba đỉnh của một tam giác.
b) Gọi M(x1;y1) là trung điểm của đoạn thẳng AB với A(1;3) và B(2;4).
Khi đó ta có:
Vậy là trung điểm của đoạn thẳng AB
c) Gọi G(x2;y2) là trọng tâm của tam giác ABC với A(1;3), B(2;4) và C(‒3;2).
Khi đó ta có:
Vậy G(0;3) là trọng tâm của tam giác ABC.
d) Để O(0;0) là tọa độ trọng tâm tam giác ABD với A(1;3), B(2;4) và D(x,y) thì:
Vậy D(‒3;‒7) thì O(0;0) là trọng tâm tam giác ABD.
Bài 4.19 trang 65 Toán 10 tập 1: Sự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(1;2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ.
Gọi B(x; y) là vị trí của tàu thủy trên mặt phẳng toạ độ sau khi khởi hành 1,5 giờ.
Tàu khởi hành từ vị trí A chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ , sau 1,5 giờ thì tàu thuỷ đến B nên
Mà A(1;2); B(x; y) nên
Khi đó:
Vậy sau khi khởi hành 1,5 giờ thì tàu thủy đến được vị trí B(5,5; 8).
Bài 4.20 trang 65 Toán 10 Tập 1: Trong Hình 4.38, quân mã đang vị trí có tọa độ (1;2). Hỏi sau một nước đi, quân mã có thể đến những vị trí nào?
Cách di chuyển của quân mã là đi theo hình chữ L, mỗi nước đi gồm tồng cộng 3 ô (tiến 1 ô rồi quẹo trái/ phải 2 ô và ngược lại hoặc tiến 2 ô rồi quẹo trái/ phải 1 ô và ngược lại) nên quân mã có thể đi đến các vị trí A, B, C, D, E và O trên bàn cờ như hình dưới đây:
Tọa độ của các vị trí đó là: O(0;0), A(0;4), B(2;4), C(3;3), D(3;1), E(2;0).
Vậy sau một nước đi, quân mã có thể đến các vị trí O(0;0), A(0;4), B(2;4), C(3;3), D(3;1), E(2;0).