30 câu Trắc nghiệm Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án 2024) – Toán 7 Cánh diều

Bộ 30 câu hỏi trắc nghiệm Toán 7 (có đáp án) Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh đầy đủ các mức độ sách Cánh diều giúp học sinh ôn luyện trắc nghiệm Toán 7 Bài 4.

1 111 lượt xem


Trắc nghiệm Toán 7 Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh

Câu 1. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo của KAB^ trong hình vẽ trên bằng:

A. 50°;

B. 40°;

C. 30°;

D. 20°.

Đáp án đúng là: D

Xét tam giác ABH và tam giác ABK có:

AH = AK, BH = BK, AB là cạnh chung

Suy ra ∆ABH = ∆ABK (c.c.c)

Do đó H^=K^ (cặp góc tương ứng)

Mà H^=120° nên K^=120°

Xét tam giác ABK có: BAK^+K^+ABK^=180° (tổng ba góc trong một tam giác)

Suy ra BAK^=180°-K^-ABK^

Hay BAK^=180°-120°-40°=20°

Vậy số đo của BAK^ bằng 20°.

Câu 2. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Biết AB=AD, B^=D^=90°,BAC^=60°. Số đo góc ACD là:

A. 20°;

B. 30°;

C. 40°;

D. 60°.

Đáp án đúng là: B

Xét ∆ABC và ∆ADC có:

ABC^=ADC^=90°

AB = AD (giả thiết),

AC là cạnh chung

Do đó ∆ABC = ∆ADC (cạnh huyền – cạnh góc vuông)

Suy ra ACB^=ACD^ (cặp góc tương ứng)

Xét ∆ABC vuông tại B có: BAC^+BCA^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy raBCA^=90°-BAC^=90°-60°=30°

Mà ACB^=ACD^ (chứng minh trên)

Do đó ACD^=30°

Vậy số đo góc ACD là 30°.

Câu 3. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo góc C và góc M lần lượt là:

A. 45° và 65°;

B. 65° và 45°;

C. 55° và 70°;

D. 70° và 55°.

Đáp án đúng là: A

Xét tam giác ABC và tam giác MNP có:

AB = MN, BC = NP, AC = MP (giả thiết)

Suy ra ∆ABC = ∆MNP (c.c.c)

Do đó A^=M^,B^=N^,C^=P^ (các cặp góc tương ứng)

Mà A^=65°N^=70° nên M^=65°,B^=70°

Xét tam giác ABC có: B^+C^+A^=180° (tổng ba góc trong một tam giác)

Suy ra C^=180°-B^-A^

Hay C^=180°-70°-65°=45°

Vậy số đo góc C và góc M lần lượt là: 45° và 65°.

Câu 4. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số cặp tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh là:

A. 1;

B. 2;

C. 3;

D. 4.

Đáp án đúng là: C

+) Xét ∆MNP và ∆MQP có:

MN = MQ, NP = QP, MP là cạnh chung

Suy ra ∆MNP = ∆MQP (c.c.c)

+) Xét ∆NPO và ∆QPO có:

NP = QP, NO = QO, PO là cạnh chung

Suy ra ∆NPO = ∆QPO (c.c.c)

+) Xét ∆MNO và ∆MQO có:

MN = MQ, NO = QO, MO là cạnh chung

Suy ra ∆MNO = ∆MQO (c.c.c)

Vậy trong hình vẽ trên có 3 cặp tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh.

Câu 5. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Khẳng định nào sau đây là sai?

A. BAC^=100° và AD // BC;

B. BAC^=100° và AD không song song với BC;

C. BAC^=100° và AB // DC;

D. ∆ABC = ∆CDA.

Đáp án đúng là: B

• Xét ∆ABC và ∆ACD có:

AB = CD, BC = DA, AC là cạnh chung

Suy ra ∆ABC = ∆CDA (c.c.c)

Do đó phương án D là đúng.

• Vì ∆ABC = ∆CDA (chứng minh trên)

Nên BAC^=DCA^ (hai góc tương ứng)

Mà DCA^=100°

Nên BAC^=100°

Mặt khác: ∆ABC = ∆CDA (chứng minh trên)

Suy ra DAC^=BCA^ (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

Do đó AD // BC (dấu hiệu nhận biết).

Vậy A là đúng

Ta có BAC^=DCA^ (chứng minh trên)

Mà hai góc này ở vị trí so le trong

Do đó AB // DC (dấu hiệu nhận biết). Vậy C là đúng

Vậy ta chọn đáp án B.

Câu 6. Cho hình vẽ sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo của BAC^ trong hình vẽ trên bằng:

A. 20°;

B. 40°;

C. 80°;

D. 120°.

Đáp án đúng là: C

Vì AHBCnên AHB^=AHC^=90°

Xét ∆ABH và ∆ACH có:

AHB^=AHC^=90° (chứng minh trên),

AB = AC (giả thiết),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông)

Suy ra BAH^=CAH^ (cặp góc tương ứng)

Mà BAH^=40° nên CAH^=40°

Ta có BAC^=BAH^+CAH^

Suy ra BAC^=40°+40°=80°

Vậy số đo góc BAC là 80°.

Câu 7. Xét bài toán “∆IAB và ∆IAC có AB = AC, IB = IC (điểm I nằm ngoài tam giác ABC). Chứng minh rằng AIB^=AIC^.”

Cho các câu sau:

(1) “AB = AC (giả thiết),

IB = IC (giả thiết),

IA là cạnh chung”;

(2) “Suy ra ∆IAB = ∆IAC (c.c.c)”;

(3) “Do đó AIB^=AIC^ (hai góc tương ứng)”;

(4) “Xét ∆IAB và ∆IAC có:”.

Hãy sắp xếp một cách hợp lí các câu trên để giải bài toán.

A. (2), (4), (1); (3);

B. (4), (2), (1), (3);

C. (1), (2), (3), (4);

D. (4), (1), (2), (3).

Đáp án đúng là: D

Ta đi chứng minh AIB^=AIC^ như sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆IAB và ∆IAC có:

AB = AC (giả thiết),

IB = IC (giả thiết),

IA là cạnh chung;

Suy ra ∆IAB = ∆IAC (c.c.c);

Do đó AIB^=AIC^ (hai góc tương ứng).

Vậy ta chọn phương án D.

Câu 8. Cho hình vẽ sau:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Khẳng định nào sau đây là đúng ?

A. ∆ABC = ∆ADC;

B. ∆ABC = ∆ACD;

C. ∆ACB = ∆ADC;

D. ∆BCA = ∆DAC.

Đáp án đúng là: A

Xét tam giác ABC và tam giác CDA có:

AB = AD, BC = DC, AC là cạnh chung

Suy ra ∆ABC = ∆ADC (c.c.c)

Vậy ∆ABC = ∆ADC hay ta có thể kí hiệu ∆ACB = ∆ACD hoặc ∆BCA = ∆DCA.

Do đó ta chọn phương án A.

Câu 9. Cho tam giác ABC có AB = AC, I là trung điểm của BC. Biết ABC^=80°, số đo của CAI^ là:

A. 40°;

B. 30°;

C. 20°;

D. 10°.

Đáp án đúng là: D

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét tam giác ABI và tam giác ACI có:

AB = AC (giả thiết),

IB = IC (do I là trung điểm của BC),

AI là cạnh chung

Do đó ∆ABI = ∆ACI (c.c.c)

Suy ra BAI^=CAI^,AIB^=AIC^,ABI^=ACI^ (các cặp góc tương ứng)

Mà ABI^=80° nên ACI^=80°

Ta có:AIB^+AIC^=180° (hai góc kề bù)

Nên AIB^=AIC^=180°2=90°

Do đó tam giác ACI vuông tại I

Khi đó ACI^+CAI^=90° (trong tam giác vuông, hai góc nhọn phụ nhau)

Suy ra CAI^=90°-ACI^=90°-80°=10°

Vậy ta chọn phương án D.

Câu 10. Cho hình vẽ bên dưới:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Số đo góc M và độ dài cạnh MN lần lượt là:

A. M^=45° MN = 5 cm;

B. M^=60° MN = 3 cm;

C. M^=75° MN = 5 cm;

D. M^=80° MN = 3 cm.

Đáp án đúng là: C

Xét tam giác ABC và tam giác MNP có:

AB = MN, BC = NP, AC = MP (giả thiết)

Suy ra ∆ABC = ∆MNP (c.c.c)

Do đó MN = BA = 5 cm (hai cạnh tương ứng) và M^=A^ (hai góc tương ứng)

Xét tam giác BCA có: B^+C^+A^=180°(định lí tổng ba góc trong một tam giác)

Suy ra A^=180°-B^-C^

Hay A^=180°-45°-60°=75°

Do đó M^=75°

Vậy M^=75° và MN = 5 cm.

Câu 11. Cho tam giác IOH, vẽ cung tròn tâm I bán kính OH, vẽ cung tròn tâm O bán kính IH, hai cung tròn này cắt nhau tại K (K và H nằm khác phía so với đường thẳng IO). Khẳng định nào sau đây là đúng nhất?

A. HO // KI;

B. OK // IH;

C. Cả A và B đều sai;

D. Cả A và B đều đúng.

Đáp án đúng là: D

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆IOH và ∆IOK có:

KO = IH (K nằm trên cung tròn tâm O bán kính IH),

OH = IK (K nằm trên cung tròn tâm I bán kính OH),

IO là cạnh chung

Do đó ∆IOH = ∆OIK (c.c.c)

Suy ra IOH^=OIK^,OIH^=IOK^ (các cặp góc tương ứng)

Mà OIK^ và IOH^ ở vị trí so le trong của IK và OH nên IK // OH (dấu hiệu nhận biết)

IOK^ và OIH^ ở vị trí so le trong của KO và IH nên KO // IH (dấu hiệu nhận biết)

Vậy ta chọn phương án D.

Câu 12. Cho tam giác MNP có MN < MP. Lấy điểm I trên cạnh MP sao cho MN = PI. Gọi H là điểm sao cho HM = HP, HN = HI.

Khẳng định nào sau đây là đúng ?

A. ∆MNH = ∆PIH;

B. ∆MNH = ∆PHI;

C. MNH^=HPI^;

D. MHN^=HIP^.

Đáp án đúng là: A

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Xét ∆MNH và ∆PIH ta có:

HM = HP (giả thiết);

HN = HI (giả thiết);

MN = PI (giả thiết).

Do đó ∆MNH = ∆PIH (c.c.c)

Suy ra MNH^=PIH^,MHN^=PHI^ (các cặp góc tương ứng)

Vậy ta chọn phương án A.

Câu 13. Cho hai tam giác MNP và OHK có MN = OH, NP = HK. Điều kiện để ∆NMP = ∆HOK theo trường hợp cạnh – cạnh – cạnh là:

A. MP = OH;

B. MN = KH;

C. MP = OK;

D. Không có điều kiện nào thoả mãn.

Đáp án đúng là: C

Vì ∆NMP = ∆HOK theo trường hợp cạnh – cạnh – cạnh mà MN = OH, NP = HK

Nên điều kiện còn thiếu là MP = OK.

Vậy ta chọn phương án C.

Câu 14. Cho tam giác NMP (NP < MN). Trên cạnh MN lấy điểm E sao cho NE = NP. Lấy Q là trung điểm của PE. Qua M kẻ đường thẳng vuông góc với PE tại F. Chọn khẳng định đúng:

A. NQE^=80°

B. FM // NQ;

C. ∆ENQ = ∆PQN;

D. Cả A, B, C đều đúng.

Đáp án đúng là: B

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

• Xét ∆ENQ và ∆PQN có:

NE = NP (giả thiết),

QE = QP (do Q là trung điểm của PE),

NQ là cạnh chung

Suy ra ∆ENQ = ∆PNQ (c.c.c)

Do đó phương án C là sai.

• Vì ∆ENQ = ∆PNQ (chứng minh trên)

Suy ra ENQ^=PNQ^,NEQ^=NPQ^,EQN^=NQP^ (các cặp góc tương ứng)

Mà EQN^+PQN^=180° (hai góc kề bù)

Nên EQN^=PQN^=180°2=90°

Do đó NQ  PE. Vậy đáp án A là sai

Mà FM  PE (giả thiết), nên FM // NQ , vậy đáp án B là đúng

Vậy ta chọn phương án B.

Câu 15. Cho hình vẽ:

15 Bài tập Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (có đáp án) | Cánh diều Trắc nghiệm Toán 7

Biết BAD^=CDA^=90°, AC = BD. Độ dài cạnh CD là:

A. 4 cm;

B. 5 cm;

C. 2 cm;

D. 3 cm.

Đáp án đúng là: C

Xét ∆ABD và ∆ACD có:

BAD^=CDA^=90° (giả thiết),

AC = BD (giả thiết),

AD là cạnh chung

Do đó ∆ABD = ∆DCA (cạnh huyền – cạnh góc vuông)

Suy ra AB = CD (cặp cạnh tương ứng)

Mà AB = 2 cm nên CD = 2 cm.

Vậy độ dài cạnh CD là 2 cm.

1 111 lượt xem