Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180 (Kết nối tri thức 2024) Toán 10

Tóm tắt lý thuyết Toán 10 Bài 5: Giá trị lượng giác của một góc từ 0 đến 180ề ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 10.

1 124 lượt xem


Lý thuyết Toán lớp 10 Bài 5: Giá trị lượng giác của một góc từ 0 đến 180

A. Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180

1. Giá trị lượng giác của một góc

Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành được gọi là nửa đường tròn đơn vị.

Cho trước một góc α, 0° ≤ α ≤ 180°. Khi đó, có duy nhất điểm M(x0; y0) trên nửa đường tròn đơn vị để xOM^=α.

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

- Định nghĩa tỉ số lượng giác của một góc từ 0o đến 180o

Với mỗi góc α (0° ≤ α ≤ 180°), gọi M(x0; y0) là điểm trên nửa đường tròn đơn vị sao cho  xOM^=α. Khi đó:

+ sin của góc α là tung độ y0 của điểm M, được kí hiệu là sin α;

+ côsin của góc α là hoành độ x0 của điểm M, được kí hiệu là cos α;

+ Khi α ≠ 90° (hay x0 ≠ 0), tang của α là y0x0, được kí hiệu là tan α;

+ Khi α ≠ 0° và α ≠ 180° (hay y0 ≠ 0), côtang của α là x0y0, được kí hiệu là cot α.

- Từ định nghĩa trên ta có:

tanα =sinαcosα(α90°);cotα=cosαsinα(α0° α180°);tanα=1cotα (α{0°;90°;180°})

- Bảng giá trị lượng giác (GTLG) của một số góc đặc biệt:

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

Chú ý: Kí hiệu || chỉ giá trị lượng giác tương ứng không xác định.

Ví dụ: Tìm các giá trị lượng giác của góc 120°.

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

Gọi M là điểm trên nửa đường tròn đơn vị sao cho xOM^=120o. Gọi N, K tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Do xOM^=120o và xOK^=90onên KOM^=30ovà MON^=60o.

Từ bảng GTLG của một số góc đặc biệt:

Ta có: cos 60o = 12 và cos 30o = 32

Các tam giác MOK và MON là các tam giác vuông với cạnh huyền bằng 1

Suy ra ON = cosMON^.OM = cos60o.1 = 12 và OK = cosMOK^.OM = cos30o.1 = 32

Mặt khác, do điểm M nằm bên trái trục tung nên M12;32

Theo định nghĩa giá trị lượng giác ta có:

sin 120o = 32

cos 120o =  12

tan 120o = sin120ocos120o=3

cot 120o = cos120osin120o=13.

Vậy sin 120o = 32; cos 120o =  12; tan 120o = 3; cot 120o = 13.

- Ta có thể dùng máy tính bỏ túi để tính giá trị gần đúng của các giá trị lượng giác của một góc.

Ví dụ:

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

- Ta cũng có thể tìm được góc khi biết một giá trị lượng giác của góc đó.

Ví dụ:

Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1)

Chú ý:

+ Khi tìm x biết sin x, máy tính chỉ đưa ra giá trị x ≤ 90°.

+ Muốn tìm x khi biết cos x, tan x, ta cũng làm tương tự như trên, chỉ thay phím Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1) tương ứng bởi phím Giá trị lượng giác của một góc từ 00 đến 1800 (Lý thuyết + Bài tập Toán lớp 10) – Kết nối tri thức (ảnh 1).

2. Mối quan hệ giữa các giá trị lượng giác của hai góc bù nhau

Đối với hai góc bù nhau, α và 180° – α, ta có:

sin (180° – α) = sin α;

cos (180° – α) = – cos α;

tan (180° – α) = – tan α  (α ≠ 90°);

cot (180° – α) = – cot α  (0° < α < 180°).

Chú ý:

- Hai góc bù nhau có sin bằng nhau; có côsin, tang, côtang đối nhau.

Ví dụ: Tính các giá trị lượng giác của góc 135°.

Hướng dẫn giải

Ta có 135° + 45° = 180°, vì vậy góc 135° và góc 45° là hai góc bù nhau:

Suy ra:

sin135° = sin45° = 22

cos135° = – cos45° = 22

tan135° = – tan45° = –1

cot135° = – cot45° = –1

Vậy sin135° = 22; cos135° = 22; tan135° = –1 ; cot135° = –1.

- Hai góc phụ nhau có sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Ví dụ:

Ta có  30° + 60° = 90° nên góc 30° và góc 60° là hai góc phụ nhau.

Khi đó:  

sin30° = cos60° = 12

tan30° = cot60° = 33.

B. Bài tập tự luyện

B1. Bài tập tự luận

Bài 1. Cho A=3sinαcosαsinα+cosα và tan α = 2. Chứng minh A=742. 

Hướng dẫn giải

Ta có: tanα=sinαcosα=2sinα=2cosα

Suy ra A=3sinαcosαsinα+cosα

=32cosαcosα2cosα+cosα 

=(321)cosα(2+1)cosα

=3212+1=321212+121=742

Vậy A= 7 –  42.

Bài 2. Tính giá trị của các biểu thức sau:

a) 3sin150° + tan135° + cot45°

b) cot135° – tan60°. cos230°

Hướng dẫn giải

a) 3sin 150° + tan 135° + cot 45°

= 3.sin(180° – 30°) + tan(180° – 45°) + cot 45°

= 3.sin30° –  tan45° + cot45°

= 3 . 12 + (-1) + 1 = 32.

b) cot 135° – tan 60°. cos2 30°  

= cot(180° – 45°) – tan60°.cos230°

= – cot45° – tan60°.cos230°

= (– 1) – 3.3224+334.

Bài 3. Cho góc α, biết sin α = 22. Tính giá trị của biểu thức A = 4sin2 α + 3cos2 α.

Hướng dẫn giải

Ta có:

A = 4sin2 α + 3cos2 α = (3sin2 α + 3cos2 α) + sin2 α = 3  (sin2 α + cos2 α) + sin2 α

Vì cos2 α  + sin α  = 1 và sin α = 22.

Thay vào A ta có:  A = 3. 1 + 222 = 72;

Vậy A = 72.

B2. Bài tập trắc nghiệm

Bài 4. Biết tanα = 2, giá trị của biểu thức M=3sinα2cosα5cosα+7sinα

bằng:

A. 49;

B. 419;

C. 419;

D. 49.

Hướng dẫn giải

Đáp án đúng là: B

Cách 1: Vì cos α ≠ 0 nên chia cả tử và mẫu của M cho cosα ta có:

M=3sinαcosα25+7sinαcosα=3.tanα25+7.tanα=3.225+7.2=419.

Cách 2: Ta có: tanα=2sinαcosα=2cosα0sinα=2cosα, thay sinα = 2cosα vào M ta được M=3.2cosα2cosα5cosα+7.2cosα=4cosα19cosα=419.

Bài 5. Cho cosα=45 và góc α thỏa mãn 90° < α < 180°. Khi

đó.

A. cotα=43;

B. sinα=35;

C. tanα=45.

D. sinα=35.

Hướng dẫn giải

Đáp án đúng là: B

Ta có: sin2α + cos2α = 1

 sin2α = 1 – cos2α  = 1 – 452= 1 – 1625925.

 sinα=35sinα=35

Vì 90° < α < 180° nên sinα > 0. Do đó sinα=35 

 tanα = sinαcosα=34, cotα = cosαsinα=43.

Vậy đáp án đúng là B.

Bài 6. Nếu 3cosx + 2 sinx = 2 và sinx < 0  thì giá trị đúng của

sinx là:

A. 513;

B. 713;

C. 913;

D. 1213.

Hướng dẫn giải

Đáp án đúng là: A

Ta có: 3cosx + 2 sinx = 2

(3cosx + 2 sinx)2 = 4

9cos2x + 12cosx.sinx + 4sin2x = 4(sin2x + cos2x)

5cos2x + 12cosx.sinx = 0

cosx(5cosx + 12sinx) = 0

cosx=05cosx+12sinx=0

Với cosx = 0sinx = 1 loại vì sinx < 0.

Với 5cosx + 12sinx = 0, ta có hệ phương trình: 5cosx+12sinx=03cosx+2sinx=2sinx=513cosx=1213.

Vậy sinx=513.

1 124 lượt xem