Lý thuyết Mệnh đề (Kết nối tri thức 2024) Toán 10

Tóm tắt lý thuyết Toán 10 Bài 1: Mệnh đề ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 10.

1 183 lượt xem


Lý thuyết Toán lớp 10 Bài 1: Mệnh đề

A. Lý thuyết Mệnh đề

1. Mệnh đề, mệnh đề chứa biến

1.1. Mệnh đề

- Những khẳng định có tính đúng hoặc sai gọi là mệnh đề logic (gọi tắt là mệnh đề). Những câu không xác định được tính đúng sai không phải là mệnh đề.

- Mỗi mệnh đề phải hoặc đúng hoặc sai. Một mệnh đề không thể vừa đúng vừa sai.

Ví dụ 1:

Câu “Hoa hồng rất đẹp nhất trong các loài hoa” là câu khẳng định nhưng không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “Bây giờ là mấy giờ?” là một câu hỏi không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “8 + 1 > 9” là một câu khẳng định có thể xác định được tính đúng sai nên câu này là mệnh đề.

Câu “Số 1 tỉ là số rất lớn” là một câu khẳng định tuy nhiên câu này mang tính quan điểm cá nhân không xác định đước tính đúng sai nên không là mệnh đề.

Chú ý:

- Người ta thường sử dụng các chữ cái P, Q, R, … để biểu thị các mệnh đề.

- Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.

- Những câu nghi vấn, câu cảm thán, câu cầu khiến không phải là mệnh đề.

Ví dụ 2:

+ “Hà Nội là thủ đô của Việt Nam” là một mệnh đề nhưng không phải mệnh đề toán học vì không phải sự kiện trong toán học.

+ “Số π là một số hữu tỉ” là mệnh đề toán học.

1.2. Mệnh đề chứa biến

- Mệnh đề chứa biến là một câu khẳng định chứa biến nhận giá trị trong một tập D nào đó mà với mỗi giá trị của biến thuộc vào D ta được một mệnh đề.

- Ta thường kí hiệu mệnh đề chứa biến n là P(n); mệnh đề chứa biến x, y là P(x, y), ….

Ví dụ:

+ “Với mọi giá trị thực của biến x, |x|  x”: không phải là mệnh đề chứa biến vì:

Ta có |x|  x với mọi giá trị thực của biến x nên đây là khẳng định đúng. Do đó phát biểu này là một mệnh đề không phải mệnh đề chứa biến.

+ “5n chia hết cho 2” là mệnh đề chứa biến.

Khi n = 4 thì mệnh đề này là mệnh đề đúng, khi n = 5 thì mệnh đề này là mệnh đề sai.

2. Mệnh đề phủ định

- Để phủ định một mệnh đề P, người ta thường thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề P. Ta kí hiệu mệnh đề phủ định của mệnh đề P là P¯.

- Mệnh đề P và mệnh đề P¯ là hai phát biểu trái ngược nhau. Nếu P đúng thì P¯ sai, còn nếu P sai thì P¯ đúng.

Ví dụ: “5 không chia hết cho 3” là mệnh đề phủ định của mệnh đề “5 chia hết cho 3”;

“3 là hợp số” là mệnh đề phủ định của mệnh đề “3 không là hợp số”.

3. Mệnh đề kéo theo, mệnh đề đảo

3.1. Mệnh đề kéo theo

- Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo và kí hiệu là P  Q.

- Các định lí toán học là những mệnh đề đúng và thường có dạng P  Q. Khi đó ta nói:

P là giả thiết của định lí, Q là kết luận của định lí hoặc

“P là điều kiện đủ để có Q”, hoặc “Q là điều kiện cần để có P”.

Chú ý: Mệnh đề P  Q chỉ sai khi P đúng và Q sai. Do đó ta chỉ cần xét tính đúng sai của mệnh đề P  Q khi P đúng. Khi đó, nếu Q đúng thì P  Q đúng, nếu Q sai thì P  Q sai.

Ví dụ: Cho 2 mệnh đề: P: “9 chia hết cho 9”; Q: “9 chia hết cho 3”.

“Nếu 9 chia hết cho 9 thì 9 chia hết cho 3” là mệnh đề kéo theo của P và Q.

P là mệnh đề đúng và Q là mệnh đề đúng nên mệnh đề kéo theo P  Q là mệnh đề đúng.

3.2. Mệnh đề đảo

- Mệnh đề Q  P được gọi là mệnh đề đảo của mệnh đề  Q.

Nhận xét: Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Ví dụ: Cho 2 mệnh đề: P: “n = 0”; Q: “n là số nguyên”.

Mệnh đề kéo theo P  Q được phát biểu là: “Nếu n = 0 thì n là số nguyên”.

Mệnh đề đảo Q  P được phát biểu là “Nếu n là số nguyên thì n = 0”.

- Mệnh đề  Q là mệnh đề đúng còn mệnh đề Q  P không đúng.

4. Mệnh đề tương đương

- Mệnh đề “P nếu và chỉ nếu Q” được gọi là một mệnh đề tương đương và kí hiệu P  Q .

Nhận xét:

- Nếu cả hai mệnh đề Q  P và P  Q đều đúng thì hai mệnh đề tương đương P  Q đúng. Khi đó ta nói “P tương đương với Q” hoặc “P là điều kiện cần và đủ để có Q” hoặc “P khi và chỉ khi Q”.

Ví dụ: Cho 2 mệnh đề: P: “Tứ giác ABCD là hình bình hành”; Q: “Tứ giác ABCD có hai cặp cạnh đối song song”.

“Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai cặp cạnh đối song song” là mệnh đề  Q.

“Nếu tứ giác ABCD có hai cặp cạnh đối song song thì tứ giác ABCD là hình bình hành” là mệnh đề  P.

Hai mệnh đề này đều đúng nên P và Q là hai mệnh đề tương đương.

Khi đó mệnh đề P  Q được phát biểu như sau: “Tứ giác ABCD là hình bình hành khi và chỉ khi tứ giác ABCD có hai cặp cạnh đối song song”.

5. Mệnh đề có chứa kí hiệu  và 

- Kí hiệu  đọc là “với mọi”.

- Kí hiệu  đọc là “có một” hoặc “tồn tại”.

- Cho mệnh đề “Px,xD”.

+ Phủ định của mệnh đề “xD,Px” là mệnh đề “xD,Px¯”.

+ Phủ định của mệnh đề “xD,Px” là mệnh đề “xD,Px¯”.

Chú ý: 

+ Phát biểu “Với mọi số tự nhiên n” có thể kí hiệu là n.

+ Phát biểu “Tồn tại số tự nhiên n” có thể kí hiệu là n.

Ví dụ:

Phủ định của mệnh đề “x,x2+1=0” là mệnh đề: “x,x2+10”.

B. Bài tập tự luyện

B1. Bài tập trắc nghiệm

Bài 1. Trong các mệnh đề sau đây, mệnh đề nào có mệnh đề đảo là đúng?

A. Nếu a và b cùng chia hết cho c thì a + b chia hết cho c;

B. Nếu hai tam giác bằng nhau thì diện tích bằng nhau;

C. Nếu a chia hết cho 3 thì a chia hết cho 9;

D. Nếu một số tận cùng bằng 0 thì số đó chia hết cho 5.

Hướng dẫn giải

Đáp án đúng là: C

- Mệnh đề đảo của A là: Nếu a + b chia hết cho c thì a và b cùng chia hết cho c.

Chọn a = 5, b = 2, c = 7 thì a + b = 5 + 2 = 7 chia hết cho c = 7. Nhưng 2 không chia hết cho 7 và 5 cũng không chia hết cho 7. Do đó mệnh đề đảo của A sai.

- Mệnh đề đảo của B là: Nếu hai tam giác có diện tích bằng nhau thì hai tam giác đó bằng nhau.

Lý thuyết Mệnh đề – Toán lớp 10 Kết nối tri thức (ảnh 1)

Hai tam giác ABC và MNP có cùng diện tích là 12 cm2. Tuy nhiên hai tam giác này không bằng nhau. Do đó mệnh đề đảo của B là sai.

- Mệnh đề đảo của C là: “Nếu a chia hết cho thì a chia hết cho 3” là mệnh đề đúng.

- Mệnh đề đảo của D là: “Nếu số đó chia hết cho 5 thì số đó có chữ số tận cùng là 0”. Ví dụ số 25 chia hết cho 5 nhưng số này có tận cùng là 5 chứ không phải 0. Do đó mệnh đề đảo của D sai.

Bài 2. Với giá trị thực nào của x mệnh đề chứa biến P(x): “2x2 – 1 < 0” là mệnh đề đúng

A. 0;

B. 5;

C. 1;

D. 45.

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

P(0) = 2.02 – 1 < 0 hay -1 < 0 (đúng). Do đó với x = 0 ta được một mệnh đề đúng.

P(5) = 2.52 – 1 < 0 hay 49 < 0 (sai). Do đó với x = 5 ta được một mệnh đề sai.

P(1) = 2.12 – 1 < 0 hay 1 < 0 (sai). Do đó với x = 1 ta được một mệnh đề sai.

P(45) = 2.452 – 1 < 0 hay 725<0 (sai). Do đó với x = 45 ta được một mệnh đề sai.

Bài 3. Cho mệnh đề A: “x,x2x+7<0”. Mệnh đề phủ định của A là:

A. A¯:"x,x2x+7>0";

B. A¯:"x,x2x+7>0";

C. A¯:"x,x2x+7<0";

D. A¯:"x,x2 x+70".

Hướng dẫn giải

Đáp án đúng là: D

Phủ định của  là 

Phủ định của < là ≥

Do đó phủ định của mệnh đề A: “x,x2x+7<0” là

A¯: “x,x2x+70”.

B2. Bài tập tự luận

Bài 1. Cho tam giác ABC. Xét các mệnh đề:

P: “Tam giác ABC có 3 cạnh bằng nhau”.

Q: “Tam giác ABC là tam giác đều”.

Hai mệnh đề P và Q có tương đương không? Nếu có, phát biểu bằng nhiều cách?

Hướng dẫn giải

+ P  Q: “Nếu tam giác ABC có 3 cạnh bằng nhau thì tam giác ABC là tam giác đều”. Đây là mệnh đề đúng.

+ Q  P: “Nếu tam giác ABC là tam giác đều thì tam giác ABC có 3 cạnh bằng nhau”. Đây là mệnh đề đúng.

Do đó: P và Q là hai mệnh đề tương đương.

Ta phát biểu mệnh đề P  Q như sau:

+ “Tam giác ABC có 3 cạnh bằng nhau tương đương với tam giác ABC là tam giác đều”.

+ “Tam giác ABC có 3 cạnh bằng nhau khi và chỉ khi tam giác ABC là tam giác đều”.

+ “Tam giác ABC có 3 cạnh bằng nhau là điều kiện cần và đủ để có tam giác ABC là tam giác đều”.

Bài 2. Trong các phát biểu dưới đây, phát biểu nào là mệnh đề?

a) “Số 150 chia hết cho 3”;

b) “x + 3 = 0”;

c) “Sách giáo khoa Toán 10 Kết nối tri thức rất hay”;

d) “Tết nguyên đán là tết cổ truyền của người Việt Nam”

Hướng dẫn giải

a) “Số 150 chia hết cho 3” là một phát biểu đúng vì 150 : 3 = 50 nên đây là một mệnh đề.

b) “x + 3 = 0” là một phát biểu chưa thể khẳng định được tính đúng sai, phụ thuộc vào biến x nên đây không là một mệnh đề.

c) “Sách giáo khoa Toán 10 Kết nối tri thức rất hay” là một phát biểu không khẳng định được tính đúng sai (tùy thuộc vào ý kiến cá nhân của mỗi người) nên đây không là mệnh đề.

d) “Tết nguyên đán là tết cổ truyền của người Việt Nam” là một phát biểu đúng nên đây là một mệnh đề.

Bài 3. Phát biểu các mệnh đề sau và lập mệnh đề phủ định của nó dưới dạng kí hiệu:

a) P(x): “x,x20”.

b) Q(x): “x,x<0”.

Hướng dẫn giải

a)

+ Phát biểu mệnh đề P(x): “Mọi số nguyên đều có bình phương lớn hơn hoặc bằng 0”.

+ Phủ định của mệnh đề P(x) là Px¯: “x,x2<0”.

b)

+ Phát biểu mệnh đề Q(x): “Có một số nguyên nhỏ hơn 0”.

+ Phủ định của mệnh đề Q(x) là Qx¯: “x,x0”.

1 183 lượt xem