Lý thuyết Ba trường hợp đồng dạng của hai tam giác (Kết nối tri thức 2024) Toán 8

Tóm tắt lý thuyết Toán 8 Bài 34: Ba trường hợp đồng dạng của hai tam giác ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 8.

1 192 lượt xem


Lý thuyết Toán lớp 8 Bài 34: Ba trường hợp đồng dạng của hai tam giác

A. Lý thuyết Ba trường hợp đồng dạng của hai tam giác

1. Trường hợp đồng dạng thứ nhất của tam giác

Trường hợp đồng dạng cạnh – cạnh – cạnh: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.

{ΔABC,ΔABC;ABAB=BCBC=ACACΔABCΔABC

 

Lý thuyết Ba trường hợp đồng dạng của hai tam giác (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 1)

2. Trường hợp đồng dạng thứ hai của tam giác

Trường hợp đồng dạng cạnh – góc – cạnh:

Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

{ΔABC,ΔABC;ABAB=ACAC,A^=A^ΔABCΔABC

 

Lý thuyết Ba trường hợp đồng dạng của hai tam giác (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 2)

Nhận xét: Nếu ΔABCΔABC theo tỉ số k và AM, A’M’ lần lượt là các đường trung tuyến của ΔABC và ΔABC thì AMAM=k

3. Trường hợp đồng dạng thứ ba của tam giác

Trường hợp đồng dạng góc – góc:

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

{ΔABC,ΔABC;A^=A^,B^=B^ΔABCΔABC

 

Lý thuyết Ba trường hợp đồng dạng của hai tam giác (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 3)

Nhận xét: ΔABCΔABC theo tỉ số k và AM, A’M’ lần lượt là các đường phân giác của ΔABC và ΔABC thì AMAM=k

Sơ đồ tư duy Ba trường hợp đồng dạng của hai tam giác

B. Bài tập Ba trường hợp đồng dạng của hai tam giác

Đang cập nhật...

1 192 lượt xem