Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (Kết nối tri thức 2024) Toán 8

Tóm tắt lý thuyết Toán 8 Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 8.

1 142 lượt xem


Lý thuyết Toán lớp 8 Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

A. Lý thuyết Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

1. Hằng đẳng thức:

Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.

Ví dụ: a+b=b+a;a(a+2)=a2+2a là những hằng đẳng thức.

a21=3a;a(a1)=2a không phải là những hằng đẳng thức.

2. Hiệu hai bình phương

Hiệu hai bình phương là gì?

A2B2=(AB)(A+B)

Ví dụ: 1012992=(10199)(101+99)=2.200=400

3. Bình phương của một tổng:

(A+B)2=A2+2AB+B2

Ví dụ: 1012=(100+1)2=1002+2.100.1+12=10201

4. Bình phương của một hiệu:

(AB)2=A22AB+B2

Ví dụ: 992=(1001)2=10022.100.1+12=9801

 

B. Bài tập Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

Bài 1. Chứng minh rằng với mọi số tự nhiên ta có:

(n + 2)2 – n2 chia hết cho 4.

Hướng dẫn giải

Ta có: (n + 2)2 – n2 = n2 + 4n + 4 – n2 = 4n + 4 = 4(n + 1)

Vì 4 ⁝ 4 suy ra 4(n + 1) ⁝ 4 với mọi số tự nhiên n.

Vậy (n + 2)2 – n2 chia hết cho 4 với mọi số tự nhiên n.

Bài 2. Thay dấu ? bằng biểu thức thích hợp.

a) (2x – y)(2x + y) = ? – y2;

b) (x + 5y)(x – 5y) = x2 – ? y2;

c) x2 + ? xy + 4y2 = (x + 2y)2;

d) (? + 3)2 = 4x2 + ? + 9.

Hướng dẫn giải

a) (2x – y )( 2x + y) = (2x)2 – y2 = 4x2 – y2;

b) (x + 5y)(x – 5y) = x2 – (5y)2 = x2 – 25y2;

c) x2 + 4xy + 4y2 = x2 + 2 . x . 2y + (2y)2 = (x + 2y)2;

d) (2x + 3)2 = (2x)2 + 2 . 2x . 3 + 32 = 4x2 + 12x + 9.

Bài 3. Những đẳng thức nào sau đây là hằng đẳng thức?

a) 2x + 1 = x + 5;                                       

b) x(x + 1) =x2 + x;

c) 4a(a – 1) = 4a2 – 4a;                               

d) 2a + b = 2b + a.

Hướng dẫn giải

a) Đẳng thức 2x + 1 = x + 5 không là hằng đẳng thức vì khi ta thay x = 2 thì hai vế của đẳng thức không bằng nhau.

b) Đẳng thức x(x + 1) =x2 + x là hằng đẳng thức.

c) Đẳng thức 4a(a – 1) = 4a2 – 4a là hằng đẳng thức.

d) Đẳng thức 2a + b = 2b + a không là hằng đẳng thức vì khi ta thay a = 1, b = 5 thì hai vế của đẳng thức không bằng nhau.

Bài 4. Rút gọn biểu thức sau:

a) (2x – 1)2 – (2x + 1)2;                              

b) (3x + 2y)2 + (2x – 3y)2.

Hướng dẫn giải

a) (2x – 1)2 – (2x + 1)2

= [(2x – 1) – (2x + 1)][(2x – 1) + (2x + 1)]

= –2.4x

= –8x.

b) (3x + 2y)2 + (2x – 3y)2

= (3x)2 + 2.3x.2y + (2y)2 + (2x)2 – 2.2x.3y + (3y)2

= 9x2 + 12xy + 4y2 + 4x2 –12xy + 9y2

= 13x2 + 13y2.

Video bài giảng Toán 8 Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu - Kết nối tri thức

1 142 lượt xem