Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức 2024) Toán 8
Tóm tắt lý thuyết Toán 8 Bài 35: Định lí Pythagore và ứng dụng ngắn gọn, chính xác sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 8.
Lý thuyết Toán 8 Bài 35: Định lí Pythagore và ứng dụng - Kết nối tri thức
A. Lý thuyết Định lí Pythagore và ứng dụng
1. Định lí Pythagore
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
Ví dụ:
Tam giác ABC có AB = 3cm, BC = 5cm, AC = 4cm thì tam giác ABC vuông tại A do , suy ra .
2. Định lí Pythagore đảo
Nếu tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
3. Ứng dụng của định lí Pythagore
a. Tính độ dài đoạn thẳng
Nhận xét: Nếu tam giác vuông ABC tại A có đường cao AH = h, các cạnh BC = a, AC = b, AB = c thì h.a = b.c.
Ví dụ: Tam giác ABC vuông tại A có AB = 5cm, AC = 12cm thì BC =
b. Chứng minh tính chất hình học
Chú ý: AM là đường cao, AC, AD là đường xiên thì đoạn thẳng MC là hình chiếu của đường xiên AC và MD là hình chiếu của đường xiên AD.
Sơ đồ tư duy Định lí Pythagore và ứng dụng
B. Bài tập Định lí Pythagore và ứng dụng
Đang cập nhật...