Lý thuyết Dấu hiệu chia hết cho 3, cho 9 (Cánh diều 2024) Toán 6
Tóm tắt lý thuyết Toán 6 Bài 9: Dấu hiệu chia hết cho 3, cho 9 ngắn gọn, chính xác sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt Toán 6.
Lý thuyết Toán lớp 6 Bài 9: Dấu hiệu chia hết cho 3, cho 9
Video giải Toán 6 Bài 9: Dấu hiệu chia hết cho 3, cho 9 - Cánh diều
A. Lý thuyết Dấu hiệu chia hết cho 3, cho 9
I. Dấu hiệu chia hết cho 3
Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3.
Ví dụ:
+ Số 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 thì số 102 chia hết cho 3.
+ Số 321 có tổng các chữ số là 3 + 2 + 1 = 6 chia hết cho 3 thì số 321 chia hết cho 3.
II. Dấu hiệu chia hết cho 9
Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 9.
Ví dụ:
+ Số 792 có tổng các chữ số là 7 + 9 + 2 = 18 chia hết cho 9 thì số 792 chia hết cho 9.
+ Số 108 có tổng các chữ số là 1 + 0 + 8 = 9 chia hết cho 9 thì số 108 chia hết cho 9.
B. Bài tập tự luyện
Bài 1. Chứng minh rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.
Lời giải:
Gọi 3 số tự nhiên liên tiếp là n; n + 1; n + 2 (với)
Tích của ba số tự nhiên liên tiếp là n(n + 1)(n + 2)
Mọi số tự nhiên n khi chia cho 3 có thể nhận số dư là 0, 1, 2.
+ Nếu r = 0 thì n chia hết cho 3. Khi đó n(n + 1)(n + 2) chia hết cho 3.
+ Nếu r = 1 thì n có dạng n = 3k + 1 ()
Ta có: n + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3.
Do đó: n(n + 1)(n + 2) chia hết cho 3.
+ Nếu r = 2 thì n có dạng n = 3k + 2 ()
Khi đó: n + 1 = 3k + 2 + 1 = 3(k + 1) chia hết cho 3.
Do đó: n(n + 1)(n + 2) chia hết cho 3.
Vậy tích của ba số tự nhiên liên tiếp chia hết cho 3.
Bài 2. Cho các số 104, 627, 3 114, 5 123, 6 831 và 72 102. Trong các số đó:
a) Số nào chia hết cho 3? Vì sao?
b) Số nào không chia hết cho 3? Vì sao?
c) Số nào chia hết cho 9? Vì sao?
d) Số nào chia hết cho 3, nhưng không chia hết cho 9? Vì sao?
Lời giải:
Ta áp dụng dấu hiệu chia hết cho 3 và dấu hiệu chia hết cho 9 để thực hiện bài tập này.
a) Trong các số đã cho ta có:
+ Số 627 chia hết cho 3 vì tổng các chữ số 6 + 2 + 7 = 15 chia hết cho 3.
+ Số 3 114 chia hết cho 3 vì tổng các chữ số 3 + 1 + 1 + 4 = 9 chia hết cho 3.
+ Số 6 831 chia hết cho 3 vì tổng các chữ số 6 + 8 + 3 + 1 = 18 chia hết cho 3.
+ Số 72 102 chia hết cho 3 vì tổng các chữ số 7 + 2 + 1 + 0 + 2 = 12 chia hết cho 3.
b) Ta có:
+ Số 104 không chia hết cho 3 vì tổng các chữ số 1 + 0 + 4 = 5 không chia hết cho 3.
+ Số 5 123 không chia hết cho 3 vì tổng các chữ số 5 + 1 + 2 + 3 = 11 không chia hết cho 3.
c) Ta có:
+ Số 3 114 chia hết cho 9 vì tổng các chữ số 3 + 1 + 1 + 4 = 9 chia hết cho 9.
+ Số 6 831 chia hết cho 9 vì tổng các chữ số 6 + 8 + 3 + 1 = 18 chia hết cho 9.
d) Ta có:
+ Số 627 chia hết cho 3 và không chia hết cho 9 vì tổng các chữ số 6 + 2 + 7 = 15 chia hết cho 3 nhưng không chia hết cho 9.
+ Số 72 102 chia hết cho 3 và không chia hết cho 9 vì tổng các chữ số 7 + 2 + 1 + 0 + 2 = 12 chia hết cho 3 nhưng không chia hết cho 9.