Bài 6.31 trang 28 Toán 10 Tập 2: Xác định parabol (P): y = ax2 + bx + 3 trong mỗi trường hợp sau:
a) (P) đi qua hai điểm A(1; 1) và B(– 1; 0);
b) (P) đi qua điểm M(1; 2) và nhận đường thẳng x = 1 làm trục đối xứng;
c) (P) có đỉnh là I(1; 4).
Giải Toán 10 (Kết nối tri thức) Bài tập cuối chương 6
Bài 6.23 trang 27 Toán 10 Tập 2: Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50 m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa điểm B, cách mình một đoạn 200 m thì Minh bắt đầu đi bộ ra lề đường để bắt kịp xe. Vận tốc đi bộ của Minh là 5 km/h, vận tốc xe đạp của Hùng là 15 km/h. Hãy xác định vị trí C trên lề đường (H.6.22) để hai bạn gặp nhau mà không bạn nào phải chờ người kia (làm tròn kết quả đến hàng phần mười).
Giải Toán 10 (Kết nối tri thức) Bài 18: Phương trình quy về phương trình bậc hai
Bài 6.22 trang 27 Toán 10 Tập 2: Cho tứ giác ABCD có AB ⊥ CD; AB = 2; BC = 13; CD = 8; DA = 5 (H.6.21). Gọi H là giao điểm của AB và CD và đặt x = AH. Hãy thiết lập một phương trình để tính độ dài x, từ đó tính diện tích tứ giác ABCD.
Giải Toán 10 (Kết nối tri thức) Bài 18: Phương trình quy về phương trình bậc hai
Vận dụng trang 26 Toán 10 Tập 2: Bác Việt sống và làm việc tại trạm hải đăng cách bờ biển 4 km. Hằng tuần bác chèo thuyền vào vị trí gần nhất trên bờ biển là bến Bính để nhận hàng hóa do cơ quan cung cấp. Tuần này, do trục trặc về vận chuyển nên toàn bộ số hàng vẫn đang nằm ở thôn Hoành, bên bờ biển cách bến Bính 9,25 km và sẽ được anh Nam vận chuyển trên con đường dọc bờ biển tới bến Bính bằng xe kéo. Bác Việt đã gọi điện thống nhất với anh Nam là họ sẽ gặp nhau ở vị trí nào đó giữa bến Bính và thôn Hoành để hai người có mặt tại đó cùng lúc, không mất thời gian chờ nhau. Giả thiết rằng đường dọc bờ biển là thẳng và bác Việt cũng di chuyển theo một đường thẳng để tới điểm hẹn. Tìm vị trí hai người hẹn gặp, biết rằng vận tốc của anh Nam là 5 km/h và của bác Việt là 4 km/h.
Hướng dẫn
Ta mô hình hóa bài toán như trong Hình 6.20: Trạm hải đăng ở vị trí A; bến Bính ở B và thôn Hoành ở C.
Giả sử bác Việt chèo thuyền cập bến ở vị trí M và ta đặt BM = x (km) (x > 0). Để hai người không phải chờ nhau thì thời gian chèo thuyền bằng thời gian kéo xe nên ta có phương trình:
.
Giải phương trình này sẽ tìm được vị trí hai người dự định gặp nhau.
Giải Toán 10 (Kết nối tri thức) Bài 18: Phương trình quy về phương trình bậc hai
Giải bài tập Toán 10 Bài 18: Phương trình quy về phương trình bậc hai
A. Các câu hỏi trong bài
Giải Toán 10 trang 25 Tập 2
Hoạt động 1 trang 25 Toán 10 Tập 2: Cho phương trình
.
a) Bình phương hai vế phương trình để khử căn và giải phương trình nhận được.
b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không?
Giải Toán 10 (Kết nối tri thức) Bài 18: Phương trình quy về phương trình bậc hai
Bài 6.19 trang 24 Toán 10 Tập 2: Xét đường tròn đường kính AB = 4 và một điểm M di chuyển trên đoạn AB, đặt AM = x (H.6.19). Xét hai đường tròn đường kính AM và MB. Kí hiệu S(x) diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ. Xác định các giá trị của x để diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ.
Giải Toán 10 (Kết nối tri thức) Bài 17: Dấu của tam thức bậc hai
Bài 6.18 trang 24 Toán 10 Tập 2: Một vật được ném theo phương thẳng đứng xuống dưới từ độ cao 320 m với vận tốc ban đầu v0 = 20 m/s. Hỏi sau ít nhất bao nhiêu giây, vật đó cách mặt đất không quá 100 m? Giả thiết rằng sức cản của không khí là không đáng kể.
Giải Toán 10 (Kết nối tri thức) Bài 17: Dấu của tam thức bậc hai
Vận dụng trang 23 Toán 10 Tập 2: Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t) = – 4,9t2 + 20t + 1, ở độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Trong khoảng thời điểm nào trong quá trình bay của nó, quả bóng sẽ ở độ cao trên 5 m so với mặt đất?
Giải Toán 10 (Kết nối tri thức) Bài 17: Dấu của tam thức bậc hai
Hoạt động 4 trang 20, 21 Toán 10 Tập 2: Nêu nội dung thay vào ô có dấu “?” trong bảng sau cho thích hợp.
• Trường hợp a > 0
∆ |
∆ < 0 |
∆ = 0 |
∆ > 0 |
Dạng đồ thị |
|
|
|
Vị trí của đồ thị so với trục Ox |
Đồ thị nằm hoàn toàn phía trên trục Ox. |
Đồ thị nằm phía trên trục Ox và tiếp xúc với trục Ox tại điểm có hoành độ . |
- Đồ thị nằm phía trên trục Ox khi x < x1 hoặc x > x2. - Đồ thị nằm phía dưới trục Ox khi x1 < x < x2. |
• Trường hợp a < 0
∆ |
∆ < 0 |
∆ = 0 |
∆ > 0 |
Dạng đồ thị |
|
|
|
Vị trí của đồ thị so với trục Ox |
? |
? |
? |
Giải Toán 10 (Kết nối tri thức) Bài 17: Dấu của tam thức bậc hai
Giải Toán 10 trang 20 Tập 2
Hoạt động 3 trang 20 Toán 10 Tập 2: Cho đồ thị hàm số y = g(x) = – 2x2 + x + 3 như Hình 6.18.
a) Xét trên từng khoảng (– ∞; – 1), , , đồ thị nằm phía trên trục Ox hay nằm phía dưới trục Ox?
b) Nhận xét về dấu của g(x) và dấu của hệ số a trên từng khoảng đó.
Giải Toán 10 (Kết nối tri thức) Bài 17: Dấu của tam thức bậc hai
Hoạt động 2 trang 19 Toán 10 Tập 2: Cho hàm số bậc hai y = f(x) = x2 – 4x + 3.
a) Xác định hệ số a. Tính f(0), f(1), f(2), f(3), f(4) và nhận xét về dấu của chúng so với dấu của hệ số a.
b) Cho đồ thị hàm số y = f(x) (H.6.17). Xét trên từng khoảng (– ∞; 1), (1; 3), (3; +∞), đồ thị nằm phía trên hay nằm phía dưới trục Ox?
c) Nhận xét về dấu của f(x) và dấu của hệ số a trên từng khoảng đó.
Giải Toán 10 (Kết nối tri thức) Bài 17: Dấu của tam thức bậc hai
Giải bài tập Toán 10 Bài 17: Dấu của tam thức bậc hai
A. Các câu hỏi trong bài
Giải Toán 10 trang 19 Tập 2
Mở đầu trang 19 Toán 10 Tập 2: Xét bài toán rào vườn ở Bài 16, nhưng ta trả lời câu hỏi: Hai cột góc hàng rào (H.6.8) cần phải cắm cách bờ tường bao nhiêu mét để mảnh đất được rào chắn có diện tích không nhỏ hơn 48 m2?
Giải Toán 10 (Kết nối tri thức) Bài 17: Dấu của tam thức bậc hai
Bài 6.14 trang 16 Toán 10 Tập 2: Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là một parabol có phương trình , trong đó x (mét) là khoảng cách theo phương ngang trên mặt đất từ vị trí của vật đến gốc O, y (mét) là độ cao của vậy so với mặt đất (H.6.15).
a) Tìm độ cao lớn nhất của vật trong quá trình bay.
b) Tính khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O. Khoảng cách này gọi là tầm xa của quỹ đạo.
Giải Toán 10 (Kết nối tri thức) Bài 16: Hàm số bậc hai
Bài 6.13 trang 16 Toán 10 Tập 2: Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau.
a) Tính diện tích mảnh vườn hình chữ nhật được rào theo chiều rộng x (mét) của nó.
b) Tính kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.
Giải Toán 10 (Kết nối tri thức) Bài 16: Hàm số bậc hai
Bài 6.12 trang 16 Toán 10 Tập 2: Hai bạn An và Bình trao đổi với nhau.
An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội (H.6.14) có dạng một parabol, khoảng cách giữa hai chân cổng là 8 m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng 0,5 m là 2,93 m. Từ đó tớ tính ra được chiều cao của cổng parabol đó là 12 m.
Sau một hồi suy nghĩ, Bình nói: Nếu dữ kiện như bạn nói, thì chiều cao của cổng parabol mà bạn tính ra ở trên là không chính xác.
Dựa vào thông tin mà An đọc được, em hãy tính chiều cao của cổng Trường Đại học Bách khoa Hà Nội để xem kết quả bạn An tính được có chính xác không nhé!
Giải Toán 10 (Kết nối tri thức) Bài 16: Hàm số bậc hai
Bài 6.11 trang 16 Toán 10 Tập 2: Gọi (P) là đồ thị hàm số bậc hai y = ax2 + bx + c. Hãy xác định dấu của hệ số a và biệt thức ∆, trong mỗi trường hợp sau:
a) (P) nằm hoàn toàn phía trên trục hoành;
b) (P) nằm hoàn toàn phía dưới trục hoành;
c) (P) cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía dưới trục hoành;
d) (P) tiếp xúc với trục hoành và nằm phía trên trục hoành.
Giải Toán 10 (Kết nối tri thức) Bài 16: Hàm số bậc hai
Bài 6.10 trang 16 Toán 10 Tập 2: Xác định parabol y = ax2 + bx + c, biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; – 12).
Gợi ý: Phương trình parabol có thể viết dưới dạng y = a(x – h)2 + k, trong đó I(h; k) là tọa độ đỉnh của parabol.
Giải Toán 10 (Kết nối tri thức) Bài 16: Hàm số bậc hai
Bài 6.9 trang 16 Toán 10 Tập 2: Xác định parabol y = ax2 + bx + 1, trong mỗi trường hợp sau:
a) Đi qua hai điểm A(1; 0) và B(2; 4);
b) Đi qua điểm A(1; 0) và có trục đối xứng x = 1;
c) Có đỉnh I(1; 2);
d) Đi qua điểm C(– 1; 1) và có tung độ đỉnh bằng – 0,25.
Giải Toán 10 (Kết nối tri thức) Bài 16: Hàm số bậc hai