Câu hỏi:
80 lượt xemLời giải
Hướng dẫn giải:
Gọi O là giao điểm của hai đường chéo AC và BD trong hình vuông ABCD. Do đó, O là trung điểm của BD, O là trung điểm của AC.
Tứ giác ABCD là hình vuông cạnh a nên độ dài đường chéo BD là
Gọi E là trung điểm của SC. Mà O là trung điểm của AC nên OE là đường trung bình của tam giác SAC, do đó, OE//SA, . Suy ra:
Vì O là trung điểm của BD nên
Vì tam giác SBC có ba cạnh bằng nhau nên tam giác SBC là tam giác đều. Do đó, BE là đường trung tuyến đồng thời là đường cao của tam giác SBC. Do đó, .
Ta có: nên EOB vuông tại O. Do đó,
Ta có:
Tứ giác ABCD là hình vuông nên
Ta có:
Vì tam giác SAB có ba cạnh bằng nhau nên tam giác SAB đều, suy ra
Suy ra:
Nếu hai vectơ cùng bằng một vectơ thứ ba thì hai vectơ đó có bằng nhau không?
Trong Ví dụ 8, gọi I là điểm thuộc đoạn thẳng AG sao cho (H.2.19). Chứng minh rằng .
Cho hình lăng trụ tam giác đều ABC.A’B’C’ (H.2.25). Tính các góc và .
Hãy nhắc lại công thức xác định tích vô hướng của hai vectơ trong mặt phẳng.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có và . Tính độ dài của các vectơ và .