50 câu Trắc nghiệm Tích vô hướng của hai vectơ (có đáp án 2024) – Toán 10 Kết nối tri thức

Bộ 50 câu hỏi trắc nghiệm Toán 10 (có đáp án) Bài 11: Tích vô hướng của hai vectơ đầy đủ các mức độ sách Kết nối tri thức giúp học sinh ôn luyện trắc nghiệm Toán 10 Bài 11.

1 113 lượt xem


Trắc nghiệm Toán 10 Bài 11: Tích vô hướng của hai vectơ

Câu 1. Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

A. a1;1 và b1;1.

B. n1;1 và k2;0.

C. u2;3 và v4;6.

D. za;b và tb;a.

Đáp án đúng là D

Ta có: a.b=1.1+1.1=1+1=20. Suy ra hai vecto a,b không vuông góc với nhau. Do đó A sai.

Ta có: n.k=1.2+1.0=2+0=20. Suy ra hai vecto n,k không vuông góc. Do đó B sai.

Ta có: u.v=2.4+3.6=8+18=260. Suy ra hai vecto >u,v không vuông góc. Do đó C sai.

Ta có: z.t=a.b+b.a=ab+ab=0. Suy ra hai vecto z,t vuông góc với nhau. Do đó D đúng.

Câu 2. Góc giữa vectơ a1;1 và vecto b1;0 có số đo bằng:

A. 90°.

B. 0°.

C. 135°.

D. 45°.

Đáp án đúng là D

Ta có: a.b=1.1+1.0=1,a=12+12=2,b=12+02=1.

cosa.b=a.ba.b=12a.b=45°.

Vậy góc giữa hai vec tơ a và b là 45°.

Câu 3. Khi nào tích vô hướng của hai vecto u,v là một số dương.

A. Khi góc giữa hai vectơ u,v là một góc tù;

B. Khi góc giữa hai vectơ u,v là góc bẹt;

C. Khi và chỉ khi góc giữa hai vectơ u,v bằng 00;

D. Khi góc giữa hai vectơ u,v là góc nhọn hoặc bằng 00.

Đáp án đúng là D

Tích vô hướng của hai vecto u,v0 được tính bởi công thức sau:

u.v=u.v.cosu,v.

 u>0,v>0 nên dấu của u.v phụ thuộc vào dấu của cosu,v.

Nếu tích vô hướng của hai vecto u,v là một số dương thì cosu,v>0. Do đó góc giữa hai vecto u,v là góc nhọn hoặc bằng 00.

Câu 4. Khi nào thì u.v2=u2.v2?

A. u.v = 0;

B. Góc giữa hai vecto u,v là 0° hoặc 180°;

C. u.v = 1;

D. Góc giữa hai vecto u,v là 90°.

Đáp án đúng là B

Ta có: u.v=u.v.cosu,v

u.v2=u.v.cosu,v2=u2.v2.cos2u,v

Để u.v2=u2.v2 thì cos2u,v=1cosu,v=1cosu,v=1u,v=00u,v=1800

Vậy khi góc giữa hai vecto u,v là 00 hoặc 1800 thì u.v2=u2.v2.

Câu 5. Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?

A. AB,BD=450.

B. AC,BC=450  AC.BC=a2.

C. AC.BD=a22.

D. BA.BD=a2.

Đáp án đúng là B

Vì ABCD là hình vuông cạnh a nên AB = BC = a, BD = AC = a2.

Ta có ABa;  0, BDa;  a, ACa;  a, BC0;  a, BAa;  0.

Khi đó:

+) AB.BD=a.a+0.a=a2

cosAB,BD=AB.BDAB.BD=a2a.a2=12AB,BD=1350. Do đó A sai.

+) AC.BC> = a.0 + a.a = a2

cosAC,BC=AC.BCAC.BC=a2a.a2=12AC,BC=450. Do đó B đúng

+) AC.BD=a.a+a.a=0. Do đó C sai.

+) BA.BD = -a.(-a) + 0.a = a2. Do đó D sai.

Câu 6. Khi nào thì hai vectơ a và b vuông góc?

A. a.b = 1;

B. a.b = - 1;

C. a.b = 0;

D. a.b = -1.

Đáp án đúng là C

Hai vec tơ a và b vuông góc khi a.b = 0.

Câu 7. Trong mặt phẳng tọa độ Oxy, cho điểm A(-1; 3), B(0; 4) và C(2x – 1; 3x2). Tổng các giá trị của x thỏa mãn AB.AC=2

A. 23;

B. 83;

C. 53;

D. 1.

Đáp án đúng là A

Ta có: AB1;1,AC2x;3x23.

Khi đó: AB.AC = 1.2x + 1.(3x2 – 3) = 3x2 + 2x – 3

 AB.AC = 2 nên 3x2 + 2x – 3 = 2

⇔ 3x2 + 2x – 5 = 0

x=1x=53

Tổng hai nghiệm là 1 + 53 = 33+53=23.

Vậy tổng hai nghiệm là 23.

Câu 8. Cho đoạn thẳng AB và điểm I là trung điểm của đoạn thẳng AB. Với điểm M bất kì, khẳng định nào dưới đây là đúng?

A. MA.MB= MI2 + IA2;

B. MA.MB= MI2 + 2 IA2;

C. MA.MB= MI2 – IA2;

D. MA.MB= 2MI2 + IA2.

Đáp án đúng là C

Vì I là trung điểm của AB nên ta có: IA+IB=0 hay IB=IA.

Xét MA.MB=MI+IA.MI+IB

=MI2+MI.IB+MI.IA+IB.IA

=MI2+MI.IB+IA+IB.IA

=MI2+IA.IA

=MI2IA2

=MI2IA2.

Câu 9. Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.

A. 11,4;

B. 6,7;

C. 5,7;

D. 9.

Đáp án đúng là C

Ta có:

AB=9;3AB=92+32=310.

AC9;6AC=92+62=313.

BC0;9BC=02+92=9.

Ta lại có:

AB.AC=AB.AC.cosBAC^

9.9+3.6=310.313.cosBAC^

63=9130.cosBAC^>

cosBAC^=7130BAC^52,13°.

Áp dụng định lí Sin trong tam giác ta được:

BCsinBAC^=2R9sin52,13°=2RR5,7.

Câu 10. Tìm điều kiện của u,v để u.v=u.v.

A. u,v là hai vectơ ngược hướng;

B. u,v là hai vectơ cùng hướng;

C. u,v là hai vectơ vuông góc;

D. u,v là hai vectơ trùng nhau.

Đáp án đúng là A

Ta có: u.v=u.v.cosu,v

Để u.v=u.v thì cosu,v=1u,v=1800

Suy ra u,v là hai vectơ ngược hướng.

Câu 11. Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính AB.AC theo a, b, c.

A. b2+c2a22bc;

B. b2+c2a24;

C. b2+c2a2;

D. b2+c2a22

Đáp án đúng là D

16 Bài tập Tích vô hướng của hai vectơ (có đáp án) | Kết nối tri thức Trắc nghiệm Toán 10

Ta có: AB.AC=AB.AC.cosAB.AC=AB.AC.cosBAC=bc.cosBAC

Theo định lí cos, ta có:

cosBAC=b2+c2a22bc

AB.AC=bc.b2+c2a22bc=b2+c2a22.

Vậy AB.AC=b2+c2a22.

Câu 12. Tính tích vô hướng của hai vectơ u1;3,v7;  2là k. Nhận xét nào sau đây đúng về giá trị của k.

A. k chia hết cho 2;

B. k là một số hữu tỉ;

C. k là một số nguyên dương;

D. k là một số vô tỉ.

Đáp án đúng là D

Tích vô hướng của hai vecto k=u.v=1.7+3.2=7+6.

Do đó k là số vô tỉ.

Câu 13. Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vecto a và b trong trường hợp a3;1,b2;4.

A. 30°;

B. 45°;

C. 60°;

D. 90°.

Đáp án đúng là B

Ta có: a.b=3.2+1.4=10

a=32+12=10,b=22+42=25

16 Bài tập Tích vô hướng của hai vectơ (có đáp án) | Kết nối tri thức Trắc nghiệm Toán 10

Câu 14. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; -3), B(5; 2). Tìm điểm M thuộc tia Oy để góc AMB^=900.

A. M1+52;0;

B. M152;0;

C. M0;152;

D. M0;1+52.

Đáp án đúng là D

Gọi M có tọa độ M(0; m).

Vì M thuộc tia Oy nên m ≥ 0.

Ta có: AM1;m+3,BM5;m2.

AM.BM=1.5+m+3.m2=m2+m1.

Để AMB^=900 thì AM.BM=0

m2+m1=0m=1+52m=152

Ta thấy m=1+52 (thỏa mãn) và m=152 (không thỏa mãn)

Vậy M0;1+52.

Câu 15. Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?

A. MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2;

B. MA2 + MB2 + MC2 = 3MG2;

C. MA2 + MB2 + MC2 = 3MG2 + (GA + GB + GC)2;

D. MA2 + MB2 + MC2 = 0.

Đáp án đúng là A

MA2+ MB2+ MC2=MA2+MB2+MC2

=MG+GA2+MG+GB2+MG+GC2

=MG2+2MG.GA+GA2+MG2+2MG.GB+GB2+MG2+2MG.GC+GC2

=3MG2+2MG.GA+GB+GC+GA2+GB2+GC2

Ta có: GA+GB+GC=0 (tính chất trọng tâm tam giác)

MG.GA+GB+GC=MG.0=0

MA2+ MB2+ MC2=3MG2+GA2+GB2+GC2.

Câu 16. Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.

A. 65;

B. 265;

C. 2;

D. 6.

Đáp án đúng là C

Gọi trực tâm H của tam giác ABC có tọa độ là H(x;y)

Khi đó, ta có: AHx+3;y1;BC0;6;BHx2;y4;AC5;3

 AHBCAH.BC=0x+3.0+y1.6=0y=1.

 BHACBH.AC=0x2.5+y4.3=0

5x103y+12=0

5x3y=2

Mà y = 1 5x3.1=2x=15.

Suy ra S = 5.15 + 1 = 2.

1 113 lượt xem