50 câu Trắc nghiệm Các số đặc trưng đo độ phân tán (có đáp án 2024) – Toán 10 Kết nối tri thức

Bộ 50 câu hỏi trắc nghiệm Toán 10 (có đáp án) Bài 14: Các số đặc trưng đo độ phân tán đầy đủ các mức độ sách Kết nối tri thức giúp học sinh ôn luyện trắc nghiệm Toán 10 Bài 14.

1 304 lượt xem


Trắc nghiệm Toán 10 Bài 14: Các số đặc trưng đo độ phân tán

Câu 1. Điểm kiểm tra của 11 học sinh cho bởi bảng số liệu sau

Điểm

7

7,5

8

8,5

9

9,5

Tần số

1

2

3

2

2

1

Tìm phương sai của bảng số liệu 

A. 0,34;

B. 0,50;

C. 0,65;

D. 5,54.

Đáp án đúng là: B

Giá trị trung bình của mẫu số liệu là x¯=1.7+2.7,5+3.8+2.8,5+2.9+1.9,5118,23.

Ta có bảng sau

Giá trị

Độ lêch

Bình phương độ lệch

7

7 – 8,23 = - 1,23

1,5129

7,5

7,5 – 8,23 = - 0,73

0,5329

7,5

7,5 – 8,23 = - 0,73

0,5329

8

8 – 8,23 = -0,23

0,0529

8

8 – 8,23 = -0,23

0,0529

8

8 – 8,23 = -0,23

0,0529

8,5

8,25 – 8,23 = 0,02

0,0004

8,5

8,25 – 8,23 = 0,02

0,0004

9

9 – 8,23 = 0,77

0,5929

9

9 – 8,23 = 0,77

0,5929

9,5

9,5 – 8,23 = 1,27

1,6129

Tổng

5,5369

Vì có 11 giá trị nên n = 11 do đó s2=5,5369110,5.

Câu 2. Điểm kiểm tra học kỳ của 10 học sinh được thống kê như sau: 6; 7; 7; 5; 8; 6; 9; 9; 8; 6. Khoảng biến thiên của dãy số là

A. 5;

B. 4;

C. 3;

D. 2.

Đáp án đúng là: B

Ta có giá trị lớn nhất của số liệu là 9 và giá trị nhỏ nhất của số liệu là 5.

Khoảng biến thiên là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu.

Vậy R = 9 – 5 = 4.

Câu 3. Mẫu số liệu cho biết số ghế trống của một xe khách trong 5 ngày: 7; 6; 6; 5; 9. Tìm phương sai của mẫu số liệu trên

A. 1,84;

B. 4;

C. 1,52;

D. 1,74.

Đáp án đúng là: A

Giá trị trung bình của mẫu số liệu: x¯=7+6+6+5+95=6,6

Ta có bảng sau

Giá trị

Độ lệch

Bình phương độ lệch

7

7 – 6,6 = 0,4

0,16

6

6 – 6,6 = - 0,6

0,36

6

6 – 6,6 = - 0,6

0,36

5

5 – 6,6 = - 1,6

2,56

9

9 – 6,6 = - 2,4

5,76

Tổng

9,2

Vì có 5 giá trị nên n = 5. Do đó s2=9,25=1,84.

Câu 4. Mẫu số liệu cho biết sĩ số của 4 lớp 10 tại một trường Trung học: 45; 43; 50; 46. Tìm độ lệch chuẩn của mẫu số liệu này

A. 2,23;

B. 2,55;

C. 2,45;

D. 2,64.

Đáp án đúng là: B

Ta có x¯=45+43+50+464=46

Ta có bảng sau

Giá trị

Độ lệch

Bình phương độ lệch

45

45 – 46 = 1

1

43

43 – 46 = - 3

9

50

50 – 46 = 4

16

46

46 – 46 = 0

0

Tổng

26

 

Vì có 4 giá trị nên n  = 4 Do đó  s2=264=6,5 

Độ lệch chuẩn s=6,52,55.

Câu 5. Số học sinh giỏi của 12 lớp trong một trường phổ thông được ghi lại như sau: 0; 2; 5; 3; 4; 5; 4; 6; 1; 2; 5; 4. Tìm độ lệch chuẩn của mẫu số liệu trên

A. 2,38;

B. 2,28;

C. 1,75;

D. 1,52.

Đáp án đúng là: C

Ta có x¯=0+2+5+3+4+5+4+6+1+2+5+4123,42.

Ta có bảng sau

Giá trị

Độ lệch

Bình phương độ lệch

0

0 – 3,42 = - 3,42

11,6964

2

2 – 3,42 = - 1,42

2,0164

5

5 – 3,42 = 1,58

2,4964

3

3 – 3,42 = - 0, 42

0,1764

4

4 – 3,42 = 0,58

0,3364

5

5 – 3,42 = 1,58

2,4964

4

4 – 3,42 = 0,58

0,3364

6

6 – 3,42 = 2,58

6,6564

1

1 – 3,42 = - 2,42

5,8564

2

2 – 3,42 = - 1,42

2,0164

5

5 – 3,42 = 1,58

2,4964

4

4 – 3,42 = 0,58

0,3364

Tổng

36,9168

 

Vì có 12 giá trị nên n = 12. Do đó s2=36,916812=3,0764

Độ lệch chuẩn s = 3,0764 ≈ 1,75.

Câu 6. Điều tra chiều cao của 10 hs lớp 10A cho kết quả như sau: 154; 160; 155; 162; 165; 162; 155; 160; 165; 162 (đơn vị cm). Khoảng tứ phân vị là

A. 5;

B. 6;

C. 7;

D. 8.

Đáp án đúng là: C

Ta sắp xếp số liệu theo thứ tự không giảm như sau: 154; 155; 155; 160; 160; 162; 162; 162; 165; 165.

Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai số chính giữa

Q2 =  (160 + 162) : 2 = 161

Ta tìm Q1 là trung vị nửa số liệu bên trái Q2 là 154; 155; 155; 160; 160 gồm 5 giá trị và tìm được Q1 = 155

Ta tìm Q3 là trung vị nửa số liệu bên phải Q2 là 162; 162; 162; 165; 165 gồm 5 giá trị và tìm được Q3 = 162

Vậy khoảng tứ phân vị ∆Q = Q3 – Q1 = 162 – 155 = 7.

Câu 7. Cho dãy số liệu thống kê 10; 8; 6; 8; 9; 8; 7; 6; 9; 9; 7. Khoảng tứ phân vị là

A. 1;

B. 3;

C. 4;

D. 2.

Đáp án đúng là: D

Ta sắp xếp số liệu theo thứ tự không giảm như sau: 6; 6; 7; 7; 8; 8; 8; 9; 9; 9; 10.

Vì n = 11 là số lẻ nên Q2 là giá trị chính giữa của mẫu số liệu Q2 =  8

Ta tìm Q1 là nửa số liệu bên trái Q2 là 6; 6; 7; 7; 8 gồm 5 giá trị và tìm được Q1 = 7

Ta tìm Q3 là nửa số liệu bên phải Q2 là 8; 9; 9; 9; 10 gồm 5 giá trị và tìm được Q3 = 9

Vậy khoảng tứ phân vị ∆Q = Q3 – Q1 = 9 – 7 = 2

Câu 8. Cho dãy số liệu thống kê  4; 5; 4; 3; 7; 6; 9; 6; 7; 8; 9. Khoảng biến thiên của dãy số liệu là

A. 3;

B. 4;

C. 5;

D. 6.

Đáp án đúng là: D

Khoảng biến thiên là hiệu số giữa giá trị lớn nhất bằng 9 và giá trị nhỏ nhất bằng 3 trong mẫu số liệu. Vậy R = 9 – 3 = 6.

Câu 9. Sản lượng lúa (tạ/ha) của 10 tỉnh cho bởi số liệu: 30; 30; 10; 25; 35; 45; 40; 40; 35; 45. Tìm giá trị bất thường của mẫu số liệu.

A. 10;

B. 10; 45;

C. 45;

D. 40; 45.

Đáp án đúng là: A

Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 10; 25; 30; 30; 35; 35; 40; 40; 45; 45.

Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai giá trị chính giữa

Q2 = (35 + 35) : 2 = 35.

Ta tìm Q1 là trung vị nửa bên trái Q2 là 10; 25; 30; 30; 35 gồm 5 giá trị và ta tìm được Q1 = 30.

Ta tìm Q3 là trung vị nửa bên phải Q2 là 35; 40; 40; 45; 45 gồm 5 giá trị và ta tìm được Q3 = 40.

Vậy ∆Q = 40 – 30 = 10

Ta có Q1 – 1,5. ∆Q = 15; Q3 + 1,5. ∆Q = 55 nên mẫu số liệu trên có một giá trị bất thường là 10 (bé hơn 15).

Câu 10. Chiều cao của 13 cây tràm (đơn vị: m) cho bởi số liệu: 5; 6,6; 7,6; 8,2; 8,2; 7,2; 9,0; 10,5; 7,2; 6,8; 8,2; 8,4; 8,0. Giá trị bất thường của mẫu số liệu trên là

A. 5;

B. 5; 6,6;

C. 5; 10,5;

D. 10,5.

Đáp án đúng là: C

Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 5; 6,6; 6,8; 7,2; 7,2; 7,6; 8,0; 8,2; 8,2; 8,2; 8,4; 9,0; 10,5.

Vì n = 13 là số lẻ nên Q2 là số chính giữa của mẫu số liệu Q2 = 8,0

Ta tìm Q1 là trung vị nửa bên trái Q2 là 5; 6,6; 6,8; 7,2; 7,2; 7,6  gồm 6 giá trị, hai số chính giữa là 6,8 và 7, 2. Do đó Q1 = (6,8 + 7,2) : 2 = 7,0.

Ta tìm Q3 là trung vị nửa bên phải Q2 là 8,2; 8,2; 8,2; 8,4; 9,0; 10,5 gồm 6 giá trị, hai số chính giữa là 8,2 và 8,4. Do đó Q3 = (8,2 + 8,4) : 2 = 8,3.

Vậy ∆Q = 8,3 – 7,0 = 1,3

Ta có Q1 – 1,5. ∆Q = 5,05; Q3 + 1,5. ∆Q = 10,25 nên mẫu số liệu trên có hai giá trị bất thường là 5 (bé hơn 5,05) và 10,5 (lớn hơn 10,25).

Câu 11. Cân nặng của 10 học sinh lớp 10A được thống kê bởi mẫu số liệu: 40; 43; 42; 45; 50; 50; 43; 45; 45; 42 (đơn vị: kg). Khoảng tứ phân vị của mẫu số liệu là

A. 3;

B. 4;

C. 5;

D. 6.

Đáp án đúng là: A

Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 40; 42; 42; 43; 43; 45; 45; 45; 50; 50.

Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai số chính giữa

Q2 = (43 + 45) : 2 = 44.

Ta tìm Q1 là trung vị nửa bên trái Q2 là 40; 42; 42; 43; 43 gồm 5 giá trị và ta tìm được Q1 = 42.

Ta tìm Q3 là trung vị nửa bên phải Q2 là 45; 45; 45; 50; 50 gồm 5 giá trị và ta tìm được Q3 = 45.

Vậy ∆Q = 45 – 42 = 3.

Câu 12. Năng xuất lúa của 4 xã được thống kê bởi mẫu số liệu: 36; 38; 34; 40 (đơn vị: tạ/ha). Độ lệch chuẩn của mẫu số liệu

A. 1,23;

B. 2,03;

C. 2,21;

D. 2,24.

Đáp án đúng là: D

Giá trị trung bình của mẫu số liệu là x¯=36+38+40+344=37

Ta có bảng sau

Giá trị

Độ lệch

Bình phương độ lệch

36

36 – 37 = - 1

1

38

38 – 37 = 1

1

34

34 – 37 = - 3

9

40

40 – 37 = 3

9

Tổng

20

Vì có 4 giá trị nên n = 4. Do đó s2=204=5

Do đó s=5=2,24.

Câu 13. Chiều cao của 6 học sinh lớp 10A được thống kê bởi mẫu số liệu: 162; 159; 155; 165; 162; 160 (đơn vị: cm). Khoảng tứ phân vị của mẫu số liệu là

A. 3;

B. 4;

C. 5;

D. 6.

Đáp án đúng là: A

Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 155; 159; 160; 162; 162; 165 Vì n = 6 là số chẵn nên Q2 là trung bình cộng của hai số chính giữa

Q2 = (160 + 162) : 2 = 161.

Ta tìm Q1 là trung vị nửa bên trái Q2 là 155; 159; 160 gồm 3 giá trị và ta tìm được Q1 = 159.

Ta tìm Q3 là trung vị nửa bên phải Q2 là 162; 162; 165  gồm 3 giá trị và ta tìm được Q3 = 162.

Vậy ∆Q = Q3 – Q1 = 162 – 159 = 3.

Câu 14. Chiều cao của 5 học sinh lớp 10 đo được là: 154; 160; 162; 162; 165 (đơn vị: cm). Khoảng biến thiên của mẫu số liệu trên là

A. 10;

B. 9;

C. 11;

D. 12.

Đáp án đúng là: C

Khoảng biến thiên là hiệu số của giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu. Vậy khoảng biến thiên R = 165 – 154 = 11.

1 304 lượt xem